Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 326(5): E567-E576, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38477664

RESUMO

Signaling through prostaglandin E2 EP3 receptor (EP3) actively contributes to the ß-cell dysfunction of type 2 diabetes (T2D). In T2D models, full-body EP3 knockout mice have a significantly worse metabolic phenotype than wild-type controls due to hyperphagia and severe insulin resistance resulting from loss of EP3 in extra-pancreatic tissues, masking any potential beneficial effects of EP3 loss in the ß cell. We hypothesized ß-cell-specific EP3 knockout (EP3 ßKO) mice would be protected from high-fat diet (HFD)-induced glucose intolerance, phenocopying mice lacking the EP3 effector, Gαz, which is much more limited in its tissue distribution. When fed a HFD for 16 wk, though, EP3 ßKO mice were partially, but not fully, protected from glucose intolerance. In addition, exendin-4, an analog of the incretin hormone, glucagon-like peptide 1, more strongly potentiated glucose-stimulated insulin secretion in islets from both control diet- and HFD-fed EP3 ßKO mice as compared with wild-type controls, with no effect of ß-cell-specific EP3 loss on islet insulin content or markers of replication and survival. However, after 26 wk of diet feeding, islets from both control diet- and HFD-fed EP3 ßKO mice secreted significantly less insulin as a percent of content in response to stimulatory glucose, with or without exendin-4, with elevated total insulin content unrelated to markers of ß-cell replication and survival, revealing severe ß-cell dysfunction. Our results suggest that EP3 serves a critical role in temporally regulating ß-cell function along the progression to T2D and that there exist Gαz-independent mechanisms behind its effects.NEW & NOTEWORTHY The EP3 receptor is a strong inhibitor of ß-cell function and replication, suggesting it as a potential therapeutic target for the disease. Yet, EP3 has protective roles in extrapancreatic tissues. To address this, we designed ß-cell-specific EP3 knockout mice and subjected them to high-fat diet feeding to induce glucose intolerance. The negative metabolic phenotype of full-body knockout mice was ablated, and EP3 loss improved glucose tolerance, with converse effects on islet insulin secretion and content.


Assuntos
Diabetes Mellitus Tipo 2 , Intolerância à Glucose , Células Secretoras de Insulina , Animais , Camundongos , Secreção de Insulina , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Exenatida/farmacologia , Intolerância à Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Obesidade/metabolismo , Glucose/metabolismo , Camundongos Knockout , Prostaglandinas/metabolismo , Prostaglandinas/farmacologia
2.
Metabolites ; 11(5)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065318

RESUMO

Mechanisms of sex differences in hypertriglyceridemia remain poorly understood. Small heterodimer partner (SHP) is a nuclear receptor that regulates bile acid, glucose, and lipid metabolism. SHP also regulates transcriptional activity of sex hormone receptors and may mediate sex differences in triglyceride (TG) metabolism. Here, we test the hypothesis that hepatic SHP mediates sex differences in TG metabolism using hepatocyte-specific SHP knockout mice. Plasma TGs in wild-type males were higher than in wild-type females and hepatic deletion of SHP lowered plasma TGs in males but not in females, suggesting hepatic SHP mediates plasma TG metabolism in a sex-specific manner. Additionally, hepatic deletion of SHP failed to lower plasma TGs in gonadectomized male mice or in males with knockdown of the liver androgen receptor, suggesting hepatic SHP modifies plasma TG via an androgen receptor pathway. Furthermore, the TG lowering effect of hepatic deletion of SHP was caused by increased clearance of postprandial TG and accompanied with decreased plasma levels of ApoC1, an inhibitor of lipoprotein lipase activity. These data support a role for hepatic SHP in mediating sex-specific effects on plasma TG metabolism through androgen receptor signaling. Understanding how hepatic SHP regulates TG clearance may lead to novel approaches to lower plasma TGs and mitigate cardiovascular disease risk.

3.
Pharmacol Res Perspect ; 9(2): e00736, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33694300

RESUMO

Chronic elevations in fatty acid metabolites termed prostaglandins can be found in circulation and in pancreatic islets from mice or humans with diabetes and have been suggested as contributing to the ß-cell dysfunction of the disease. Two-series prostaglandins bind to a family of G-protein-coupled receptors, each with different biochemical and pharmacological properties. Prostaglandin E receptor (EP) subfamily agonists and antagonists have been shown to influence ß-cell insulin secretion, replication, and/or survival. Here, we define EP3 as the sole prostanoid receptor family member expressed in a rat ß-cell-derived line that regulates glucose-stimulated insulin secretion. Several other agonists classically understood as selective for other prostanoid receptor family members also reduce glucose-stimulated insulin secretion, but these effects are only observed at relatively high concentrations, and, using a well-characterized EP3-specific antagonist, are mediated solely by cross-reactivity with rat EP3. Our findings confirm the critical role of EP3 in regulating ß-cell function, but are also of general interest, as many agonists supposedly selective for other prostanoid receptor family members are also full and efficacious agonists of EP3. Therefore, care must be taken when interpreting experimental results from cells or cell lines that also express EP3.


Assuntos
Glucose/metabolismo , Secreção de Insulina/fisiologia , Receptores de Prostaglandina E Subtipo EP3/metabolismo , Animais , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos/métodos , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina , Ratos , Receptores de Prostaglandina E Subtipo EP3/antagonistas & inibidores
4.
Physiol Rep ; 9(4): e14732, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33625789

RESUMO

Elevated triglycerides (TGs) and impaired TG clearance increase the risk of cardiovascular disease in both men and women, but molecular mechanisms remain poorly understood. Cholesteryl ester transfer protein (CETP) is a lipid shuttling protein known for its effects on high-density lipoprotein cholesterol. Although mice lack CETP, transgenic expression of CETP in mice alters TG metabolism in males and females by sex-specific mechanisms. A unifying mechanism explaining how CETP alters TG metabolism in both males and females remains unknown. Since low-density lipoprotein receptor (LDLR) regulates both TG clearance and very low density lipoprotein (VLDL) production, LDLR may be involved in CETP-mediated alterations in TG metabolism in both males and females. We hypothesize that LDLR is required for CETP to alter TG metabolism in both males and females. We used LDLR null mice with and without CETP to demonstrate that LDLR is required for CETP to raise plasma TGs and to impair TG clearance in males. We also demonstrate that LDLR is required for CETP to increase TG production and to increase the expression and activity of VLDL synthesis targets in response to estrogen. Additionally, we show that LDLR is required for CETP to enhance ß-oxidation. These studies support that LDLR is required for CETP to regulate TG metabolism in both males and females.


Assuntos
Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Fígado/metabolismo , Receptores de LDL/metabolismo , Triglicerídeos/sangue , Animais , Proteínas de Transferência de Ésteres de Colesterol/genética , Feminino , Genótipo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Receptores de LDL/genética , Caracteres Sexuais , Fatores Sexuais
5.
Metabolites ; 11(1)2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467110

RESUMO

The transition from ß-cell compensation to ß-cell failure is not well understood. Previous works by our group and others have demonstrated a role for Prostaglandin EP3 receptor (EP3), encoded by the Ptger3 gene, in the loss of functional ß-cell mass in Type 2 diabetes (T2D). The primary endogenous EP3 ligand is the arachidonic acid metabolite prostaglandin E2 (PGE2). Expression of the pancreatic islet EP3 and PGE2 synthetic enzymes and/or PGE2 excretion itself have all been shown to be upregulated in primary mouse and human islets isolated from animals or human organ donors with established T2D compared to nondiabetic controls. In this study, we took advantage of a rare and fleeting phenotype in which a subset of Black and Tan BRachyury (BTBR) mice homozygous for the Leptinob/ob mutation-a strong genetic model of T2D-were entirely protected from fasting hyperglycemia even with equal obesity and insulin resistance as their hyperglycemic littermates. Utilizing this model, we found numerous alterations in full-body metabolic parameters in T2D-protected mice (e.g., gut microbiome composition, circulating pancreatic and incretin hormones, and markers of systemic inflammation) that correlate with improvements in EP3-mediated ß-cell dysfunction.

6.
J Biol Chem ; 296: 100056, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33172888

RESUMO

The inhibitory G protein alpha-subunit (Gαz) is an important modulator of beta-cell function. Full-body Gαz-null mice are protected from hyperglycemia and glucose intolerance after long-term high-fat diet (HFD) feeding. In this study, at a time point in the feeding regimen where WT mice are only mildly glucose intolerant, transcriptomics analyses reveal islets from HFD-fed Gαz KO mice have a dramatically altered gene expression pattern as compared with WT HFD-fed mice, with entire gene pathways not only being more strongly upregulated or downregulated versus control-diet fed groups but actually reversed in direction. Genes involved in the "pancreatic secretion" pathway are the most strongly differentially regulated: a finding that correlates with enhanced islet insulin secretion and decreased glucagon secretion at the study end. The protection of Gαz-null mice from HFD-induced diabetes is beta-cell autonomous, as beta cell-specific Gαz-null mice phenocopy the full-body KOs. The glucose-stimulated and incretin-potentiated insulin secretion response of islets from HFD-fed beta cell-specific Gαz-null mice is significantly improved as compared with islets from HFD-fed WT controls, which, along with no impact of Gαz loss or HFD feeding on beta-cell proliferation or surrogates of beta-cell mass, supports a secretion-specific mechanism. Gαz is coupled to the prostaglandin EP3 receptor in pancreatic beta cells. We confirm the EP3γ splice variant has both constitutive and agonist-sensitive activity to inhibit cAMP production and downstream beta-cell function, with both activities being dependent on the presence of beta-cell Gαz.


Assuntos
Diabetes Mellitus Tipo 2/patologia , Dieta Hiperlipídica , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Células Secretoras de Insulina/patologia , Obesidade/complicações , Animais , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/etiologia , Modelos Animais de Doenças , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
7.
Lipids ; 56(1): 17-29, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32783209

RESUMO

Elevated postprandial triacylglycerols (TAG) are an important risk factor for cardiovascular disease. Men have higher plasma TAG and impaired TAG clearance compared to women, which may contribute to sex differences in risk of cardiovascular disease. Understanding mechanisms of sex differences in TAG metabolism may yield novel therapeutic targets to prevent cardiovascular disease. Cholesteryl ester transfer protein (CETP) is a lipid shuttling protein known for its effects on high-density lipoprotein (HDL) cholesterol levels. Although mice lack CETP, we previously demonstrated that transgenic CETP expression in female mice alters TAG metabolism. The impact of CETP on TAG metabolism in males, however, is not well understood. Here, we demonstrate that CETP expression increases plasma TAG in males, especially in very-low density lipoprotein (VLDL), by impairing postprandial plasma TAG clearance compared to wild-type (WT) males. Gonadal hormones were required for CETP to impair TAG clearance, suggesting a role for sex hormones for this effect. Testosterone replacement in the setting of gonadectomy was sufficient to restore the effect of CETP on TAG. Lastly, liver androgen receptor (AR) was required for CETP to increase plasma TAG. Thus, expression of CETP in males raises plasma TAG by impairing TAG clearance via testosterone signaling to AR. Further understanding of how CETP and androgen signaling impair TAG clearance may lead to novel approaches to reduce TAG and mitigate risk of cardiovascular disease.


Assuntos
Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Receptores Androgênicos/metabolismo , Triglicerídeos/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
8.
J Nutr ; 149(8): 1369-1376, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31111947

RESUMO

BACKGROUND: Hyperhomocysteinemia is associated with increased cardiovascular disease risk. Whole eggs contain several nutrients known to affect homocysteine regulation, including sulfur amino acids, choline, and B vitamins. OBJECTIVE: The aim of this study was to determine the effect of whole eggs and egg components (i.e., egg protein and choline) with respect to 1) homocysteine balance and 2) the hepatic expression and activity of betaine-homocysteine S-methyltransferase (BHMT) and cystathionine ß-synthase (CBS) in a folate-restricted (FR) rat model of hyperhomocysteinemia. METHODS: Male Sprague Dawley rats (n = 48; 6 wk of age) were randomly assigned to a casein-based diet (C; n = 12), a casein-based diet supplemented with choline (C + Cho; 1.3%, wt:wt; n = 12), an egg protein-based diet (EP; n = 12), or a whole egg-based diet (WE; n = 12). At week 2, half of the rats in each of the 4 dietary groups were provided an FR (0 g folic acid/kg) diet and half continued on the folate-sufficient (FS; 0.2 g folic acid/kg) diet for an additional 6 wk. All diets contained 20% (wt:wt) total protein. Serum homocysteine was measured by HPLC and BHMT and CBS expression and activity were evaluated using real-time quantitative polymerase chain reaction, Western blot, and enzyme activity. A 2-factor ANOVA was used for statistical comparisons. RESULTS: Rats fed FR-C exhibited a 53% increase in circulating homocysteine concentrations compared with rats fed FS-C (P < 0.001). In contrast, serum homocysteine did not differ between rats fed FS-C and FR-EP (P = 0.078). Hepatic BHMT activity was increased by 45% and 40% by the EP (P < 0.001) and WE (P = 0.002) diets compared with the C diets, respectively. CONCLUSIONS: Dietary intervention with egg protein prevented elevated circulating homocysteine concentrations in a rat model of hyperhomocysteinemia, due in part to upregulation of hepatic BHMT. These data may support the inclusion of egg protein for dietary recommendations targeting hyperhomocysteinemia prevention.


Assuntos
Betaína-Homocisteína S-Metiltransferase/metabolismo , Proteínas Dietéticas do Ovo/administração & dosagem , Deficiência de Ácido Fólico/metabolismo , Hiper-Homocisteinemia/prevenção & controle , Fígado/enzimologia , Regulação para Cima , Animais , Betaína-Homocisteína S-Metiltransferase/genética , Peso Corporal , Cisteína/sangue , Proteínas Dietéticas do Ovo/metabolismo , Masculino , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley
9.
Mol Metab ; 8: 106-116, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29331506

RESUMO

OBJECTIVE: Hepatocyte deletion of estrogen receptor alpha (LKO-ERα) worsens fatty liver, dyslipidemia, and insulin resistance in high-fat diet fed female mice. However, whether or not hepatocyte ERα regulates reverse cholesterol transport (RCT) in mice has not yet been reported. METHODS AND RESULTS: Using LKO-ERα mice and wild-type (WT) littermates fed a Western-type diet, we found that deletion of hepatocyte ERα impaired in vivo RCT measured by the removal of 3H-cholesterol from macrophages to the liver, and subsequently to feces, in female mice but not in male mice. Deletion of hepatocyte ERα decreased the capacity of isolated HDL to efflux cholesterol from macrophages and reduced the ability of isolated hepatocytes to accept cholesterol from HDL ex vivo in both sexes. However, only in female mice, LKO-ERα increased serum cholesterol levels and increased HDL particle sizes. Deletion of hepatocyte ERα increased adiposity and worsened insulin resistance to a greater degree in female than male mice. All of the changes lead to a 5.6-fold increase in the size of early atherosclerotic lesions in female LKO-ERα mice compared to WT controls. CONCLUSIONS: Estrogen signaling through hepatocyte ERα plays an important role in RCT and is protective against lipid retention in the artery wall during early stages of atherosclerosis in female mice fed a Western-type diet.


Assuntos
Aterosclerose/metabolismo , Colesterol/metabolismo , Receptor alfa de Estrogênio/metabolismo , Hepatócitos/metabolismo , Obesidade/metabolismo , Animais , Aterosclerose/etiologia , Transporte Biológico , Células Cultivadas , Dieta Ocidental/efeitos adversos , Receptor alfa de Estrogênio/genética , Feminino , Resistência à Insulina , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Fatores Sexuais
11.
Diabetes ; 66(6): 1572-1585, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28193789

RESUMO

Prostaglandin E2 (PGE2) is derived from arachidonic acid, whereas PGE3 is derived from eicosapentaenoic acid (EPA) using the same downstream metabolic enzymes. Little is known about the impact of EPA and PGE3 on ß-cell function, particularly in the diabetic state. In this work, we determined that PGE3 elicits a 10-fold weaker reduction in glucose-stimulated insulin secretion through the EP3 receptor as compared with PGE2 We tested the hypothesis that enriching pancreatic islet cell membranes with EPA, thereby reducing arachidonic acid abundance, would positively impact ß-cell function in the diabetic state. EPA-enriched islets isolated from diabetic BTBR Leptinob/ob mice produced significantly less PGE2 and more PGE3 than controls, correlating with improved glucose-stimulated insulin secretion. NAD(P)H fluorescence lifetime imaging showed that EPA acts downstream and independently of mitochondrial function. EPA treatment also reduced islet interleukin-1ß expression, a proinflammatory cytokine known to stimulate prostaglandin production and EP3 expression. Finally, EPA feeding improved glucose tolerance and ß-cell function in a mouse model of diabetes that incorporates a strong immune phenotype: the NOD mouse. In sum, increasing pancreatic islet EPA abundance improves diabetic ß-cell function through both direct and indirect mechanisms that converge on reduced EP3 signaling.


Assuntos
Alprostadil/análogos & derivados , Diabetes Mellitus/metabolismo , Dinoprostona/metabolismo , Ácido Eicosapentaenoico/farmacologia , Glucose/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Insulina/metabolismo , Receptores de Prostaglandina E Subtipo EP3/efeitos dos fármacos , Alprostadil/metabolismo , Animais , Ácido Araquidônico/metabolismo , Cromatografia Gasosa , Perfilação da Expressão Gênica , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Interleucina-1beta/farmacologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos NOD , Camundongos Obesos , Imagem Óptica , Fosfolipídeos , Receptores de Prostaglandina E Subtipo EP3/metabolismo , Transdução de Sinais
12.
Cell Rep ; 16(2): 520-530, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27346343

RESUMO

Protein-restricted (PR), high-carbohydrate diets improve metabolic health in rodents, yet the precise dietary components that are responsible for these effects have not been identified. Furthermore, the applicability of these studies to humans is unclear. Here, we demonstrate in a randomized controlled trial that a moderate PR diet also improves markers of metabolic health in humans. Intriguingly, we find that feeding mice a diet specifically reduced in branched-chain amino acids (BCAAs) is sufficient to improve glucose tolerance and body composition equivalently to a PR diet via metabolically distinct pathways. Our results highlight a critical role for dietary quality at the level of amino acids in the maintenance of metabolic health and suggest that diets specifically reduced in BCAAs, or pharmacological interventions in this pathway, may offer a translatable way to achieve many of the metabolic benefits of a PR diet.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Obesidade/dietoterapia , Tecido Adiposo Branco/patologia , Aminoácidos de Cadeia Ramificada/administração & dosagem , Animais , Glicemia , Proteínas Alimentares/administração & dosagem , Fatores de Crescimento de Fibroblastos/metabolismo , Gluconeogênese , Intolerância à Glucose , Humanos , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Obesidade/sangue , Tamanho do Órgão , Estresse Fisiológico
13.
Aging Cell ; 15(1): 28-38, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26463117

RESUMO

Inhibition of the mechanistic target of rapamycin (mTOR) signaling pathway by the FDA-approved drug rapamycin has been shown to promote lifespan and delay age-related diseases in model organisms including mice. Unfortunately, rapamycin has potentially serious side effects in humans, including glucose intolerance and immunosuppression, which may preclude the long-term prophylactic use of rapamycin as a therapy for age-related diseases. While the beneficial effects of rapamycin are largely mediated by the inhibition of mTOR complex 1 (mTORC1), which is acutely sensitive to rapamycin, many of the negative side effects are mediated by the inhibition of a second mTOR-containing complex, mTORC2, which is much less sensitive to rapamycin. We hypothesized that different rapamycin dosing schedules or the use of FDA-approved rapamycin analogs with different pharmacokinetics might expand the therapeutic window of rapamycin by more specifically targeting mTORC1. Here, we identified an intermittent rapamycin dosing schedule with minimal effects on glucose tolerance, and we find that this schedule has a reduced impact on pyruvate tolerance, fasting glucose and insulin levels, beta cell function, and the immune system compared to daily rapamycin treatment. Further, we find that the FDA-approved rapamycin analogs everolimus and temsirolimus efficiently inhibit mTORC1 while having a reduced impact on glucose and pyruvate tolerance. Our results suggest that many of the negative side effects of rapamycin treatment can be mitigated through intermittent dosing or the use of rapamycin analogs.


Assuntos
Glicemia/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Sistema Imunitário/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sirolimo/efeitos adversos , Sirolimo/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Intolerância à Glucose/tratamento farmacológico , Células Secretoras de Insulina/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Sirolimo/administração & dosagem , Sirolimo/análogos & derivados
14.
JPEN J Parenter Enteral Nutr ; 40(7): 1042-9, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-25934045

RESUMO

INTRODUCTION: Parenteral nutrition (PN) increases the risk of infection in critically ill patients and is associated with defects in gastrointestinal innate immunity. Goblet cells produce mucosal defense compounds, including mucin (principally MUC2), trefoil factor 3 (TFF3), and resistin-like molecule ß (RELMß). Bombesin (BBS), a gastrin-releasing peptide analogue, experimentally reverses PN-induced defects in Paneth cell innate immunity. We hypothesized that PN reduces goblet cell product expression and PN+BBS would reverse these PN-induced defects. METHODS: Two days after intravenous cannulation, male Institute of Cancer Research mice were randomized to chow (n = 15), PN (n = 13), or PN+BBS (15 µg tid) (n = 12) diets for 5 days. Defined segments of ileum and luminal fluid were analyzed for MUC2, TFF3, and RELMß by quantitative reverse transcriptase polymerase chain reaction and Western blot. Th2 cytokines interleukin (IL)-4 and IL-13 were measured by enzyme-linked immunosorbent assay. RESULTS: Compared with chow, PN significantly reduced MUC2 in ileum (P < .01) and luminal fluid (P = .01). BBS supplementation did not improve ileal or luminal MUC2 compared with PN (P > .3). Compared with chow, PN significantly reduced TFF3 in ileum (P < .02) and luminal fluid (P < .01). BBS addition did not improve ileal or luminal TFF3 compared with PN (P > .3). Compared with chow, PN significantly reduced ileal RELMß (P < .01). BBS supplementation significantly increased ileal RELMß to levels similar to chow (P < .03 vs PN; P > .6 vs chow). Th2 cytokines were decreased with PN and returned to chow levels with BBS. CONCLUSION: PN significantly impairs the goblet cell component of innate mucosal immunity. BBS only preserves goblet cell RELMß during PN but not other goblet cell products measured.


Assuntos
Bombesina/farmacologia , Células Caliciformes/efeitos dos fármacos , Hormônios Ectópicos/metabolismo , Nutrição Parenteral , Animais , Células Caliciformes/metabolismo , Hormônios Ectópicos/genética , Íleo/efeitos dos fármacos , Íleo/metabolismo , Imunidade Inata , Peptídeos e Proteínas de Sinalização Intercelular , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Mucina-2/genética , Mucina-2/metabolismo , Celulas de Paneth/efeitos dos fármacos , Celulas de Paneth/metabolismo , Fator Trefoil-3/genética , Fator Trefoil-3/metabolismo
15.
Islets ; 7(3): e1076607, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26452321

RESUMO

One complication to comparing ß-cell function among islet preparations, whether from genetically identical or diverse animals or human organ donors, is the number of islets required per assay. Islet numbers can be limiting, meaning that fewer conditions can be tested; other islet measurements must be excluded; or islets must be pooled from multiple animals/donors for each experiment. Furthermore, pooling islets negates the possibility of performing single-islet comparisons. Our aim was to validate a 96-well plate-based single islet insulin secretion assay that would be as robust as previously published methods to quantify glucose-stimulated insulin secretion from mouse and human islets. First, we tested our new assay using mouse islets, showing robust stimulation of insulin secretion 24 or 48 h after islet isolation. Next, we utilized the assay to quantify mouse islet function on an individual islet basis, measurements that would not be possible with the standard pooled islet assay methods. Next, we validated our new assay using human islets obtained from the Integrated Islet Distribution Program (IIDP). Human islets are known to have widely varying insulin secretion capacity, and using our new assay we reveal biologically relevant factors that are significantly correlated with human islet function, whether displayed as maximal insulin secretion response or fold-stimulation of insulin secretion. Overall, our results suggest this new microplate assay will be a useful tool for many laboratories, expert or not in islet techniques, to be able to precisely quantify islet insulin secretion from their models of interest.


Assuntos
Bioensaio/métodos , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Adulto , Animais , Bioensaio/instrumentação , Técnicas de Cultura de Células/instrumentação , Feminino , Glucose/farmacologia , Humanos , Secreção de Insulina , Ilhotas Pancreáticas/citologia , Masculino , Camundongos , Pessoa de Meia-Idade , Adulto Jovem
16.
Am J Physiol Gastrointest Liver Physiol ; 309(6): G431-42, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26185331

RESUMO

Stimulation of digestive organs by enteric peptides is lost during total parental nutrition (PN). Here we examine the role of the enteric peptide bombesin (BBS) in stimulation of the exocrine and endocrine pancreas during PN. BBS protects against exocrine pancreas atrophy and dysfunction caused by PN. BBS also augments circulating insulin levels, suggesting an endocrine pancreas phenotype. While no significant changes in gross endocrine pancreas morphology were observed, pancreatic islets isolated from BBS-treated PN mice showed a significantly enhanced insulin secretion response to the glucagon-like peptide-1 (GLP-1) agonist exendin-4, correlating with enhanced GLP-1 receptor expression. BBS itself had no effect on islet function, as reflected in low expression of BBS receptors in islet samples. Intestinal BBS receptor expression was enhanced in PN with BBS, and circulating active GLP-1 levels were significantly enhanced in BBS-treated PN mice. We hypothesized that BBS preserved islet function indirectly, through the enteroendocrine cell-pancreas axis. We confirmed the ability of BBS to directly stimulate intestinal enteroid cells to express the GLP-1 precursor preproglucagon. In conclusion, BBS preserves the exocrine and endocrine pancreas functions during PN; however, the endocrine stimulation is likely indirect, through the enteroendocrine cell-pancreas axis.


Assuntos
Bombesina/farmacologia , Peptídeo Liberador de Gastrina/análogos & derivados , Ilhotas Pancreáticas/efeitos dos fármacos , Pâncreas Exócrino/efeitos dos fármacos , Nutrição Parenteral/efeitos adversos , Amilases/metabolismo , Animais , DNA/metabolismo , Alimentos Formulados , Regulação da Expressão Gênica , Hiperglicemia/sangue , Ilhotas Pancreáticas/anatomia & histologia , Lipase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Pâncreas Exócrino/anatomia & histologia , Hormônios Pancreáticos/metabolismo
17.
Diabetes ; 64(11): 3798-807, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26153246

RESUMO

There is growing concern over confounding artifacts associated with ß-cell-specific Cre-recombinase transgenic models, raising questions about their general usefulness in research. The inducible ß-cell-specific transgenic (MIP-CreERT(1Lphi)) mouse was designed to circumvent many of these issues, and we investigated whether this tool effectively addressed concerns of ectopic expression and disruption of glucose metabolism. Recombinase activity was absent from the central nervous system using a reporter line and high-resolution microscopy. Despite increased pancreatic insulin content, MIP-CreERT mice on a chow diet exhibited normal ambient glycemia, glucose tolerance and insulin sensitivity, and appropriate insulin secretion in response to glucose in vivo and in vitro. However, MIP-CreERT mice on different genetic backgrounds were protected from high-fat/ streptozotocin (STZ)-induced hyperglycemia that was accompanied by increased insulin content and islet density. Ectopic human growth hormone (hGH) was highly expressed in MIP-CreERT islets independent of tamoxifen administration. Circulating insulin levels remained similar to wild-type controls, whereas STZ-associated increases in α-cell number and serum glucagon were significantly blunted in MIP-CreERT(1Lphi) mice, possibly due to paracrine effects of hGH-induced serotonin expression. These studies reveal important new insight into the strengths and limitations of the MIP-CreERT mouse line for ß-cell research.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Hormônio do Crescimento Humano/metabolismo , Hiperglicemia/metabolismo , Células Secretoras de Insulina/metabolismo , Fenótipo , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/genética , Homeostase/fisiologia , Hormônio do Crescimento Humano/genética , Humanos , Hiperglicemia/genética , Insulina/sangue , Masculino , Camundongos , Camundongos Transgênicos
18.
Mol Endocrinol ; 29(7): 978-87, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25984632

RESUMO

Cholecystokinin (CCK) is a classic gut hormone that is also expressed in the pancreatic islet, where it is highly up-regulated with obesity. Loss of CCK results in increased ß-cell apoptosis in obese mice. Similarly, islet α-cells produce increased amounts of another gut peptide, glucagon-like peptide 1 (GLP-1), in response to cytokine and nutrient stimulation. GLP-1 also protects ß-cells from apoptosis via cAMP-mediated mechanisms. Therefore, we hypothesized that the activation of islet-derived CCK and GLP-1 may be linked. We show here that both human and mouse islets secrete active GLP-1 as a function of body mass index/obesity. Furthermore, GLP-1 can rapidly stimulate ß-cell CCK production and secretion through direct targeting by the cAMP-modulated transcription factor, cAMP response element binding protein (CREB). We find that cAMP-mediated signaling is required for Cck expression, but CCK regulation by cAMP does not require stimulatory levels of glucose or insulin secretion. We also show that CREB directly targets the Cck promoter in islets from obese (Leptin(ob/ob)) mice. Finally, we demonstrate that the ability of GLP-1 to protect ß-cells from cytokine-induced apoptosis is partially dependent on CCK receptor signaling. Taken together, our work suggests that in obesity, active GLP-1 produced in the islet stimulates CCK production and secretion in a paracrine manner via cAMP and CREB. This intraislet incretin loop may be one mechanism whereby GLP-1 protects ß-cells from apoptosis.


Assuntos
Apoptose , Colecistocinina/biossíntese , Citoproteção , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Células Secretoras de Insulina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Sequência de Bases , Índice de Massa Corporal , Linhagem Celular Tumoral , Colecistocinina/metabolismo , AMP Cíclico , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Citoproteção/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Humanos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Camundongos , Dados de Sequência Molecular , Obesidade/genética , Obesidade/metabolismo , Fosforilação/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Ratos , Receptores da Colecistocinina/metabolismo
19.
J Vis Exp ; (88): e50374, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24998772

RESUMO

Uncontrolled glycemia is a hallmark of diabetes mellitus and promotes morbidities like neuropathy, nephropathy, and retinopathy. With the increasing prevalence of diabetes, both immune-mediated type 1 and obesity-linked type 2, studies aimed at delineating diabetes pathophysiology and therapeutic mechanisms are of critical importance. The ß-cells of the pancreatic islets of Langerhans are responsible for appropriately secreting insulin in response to elevated blood glucose concentrations. In addition to glucose and other nutrients, the ß-cells are also stimulated by specific hormones, termed incretins, which are secreted from the gut in response to a meal and act on ß-cell receptors that increase the production of intracellular cyclic adenosine monophosphate (cAMP). Decreased ß-cell function, mass, and incretin responsiveness are well-understood to contribute to the pathophysiology of type 2 diabetes, and are also being increasingly linked with type 1 diabetes. The present mouse islet isolation and cAMP determination protocol can be a tool to help delineate mechanisms promoting disease progression and therapeutic interventions, particularly those that are mediated by the incretin receptors or related receptors that act through modulation of intracellular cAMP production. While only cAMP measurements will be described, the described islet isolation protocol creates a clean preparation that also allows for many other downstream applications, including glucose stimulated insulin secretion, [3(H)]-thymidine incorporation, protein abundance, and mRNA expression.


Assuntos
Separação Celular/métodos , AMP Cíclico/análise , Técnicas Imunoenzimáticas/métodos , Ilhotas Pancreáticas/química , Ilhotas Pancreáticas/citologia , Animais , AMP Cíclico/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos
20.
Exp Mol Med ; 46: e102, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24946790

RESUMO

The worldwide prevalence of obesity is steadily increasing, nearly doubling between 1980 and 2008. Obesity is often associated with insulin resistance, a major risk factor for type 2 diabetes mellitus (T2DM): a costly chronic disease and serious public health problem. The underlying cause of T2DM is a failure of the beta cells of the pancreas to continue to produce enough insulin to counteract insulin resistance. Most current T2DM therapeutics do not prevent continued loss of insulin secretion capacity, and those that do have the potential to preserve beta cell mass and function are not effective in all patients. Therefore, developing new methods for preventing and treating obesity and T2DM is very timely and of great significance. There is now considerable literature demonstrating a link between inhibitory guanine nucleotide-binding protein (G protein) and G protein-coupled receptor (GPCR) signaling in insulin-responsive tissues and the pathogenesis of obesity and T2DM. These studies are suggesting new and emerging therapeutic targets for these conditions. In this review, we will discuss inhibitory G proteins and GPCRs that have primary actions in the beta cell and other peripheral sites as therapeutic targets for obesity and T2DM, improving satiety, insulin resistance and/or beta cell biology.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Obesidade/metabolismo , Receptor MT2 de Melatonina/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Receptores de Prostaglandina/metabolismo , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Humanos , Células Secretoras de Insulina/metabolismo , Obesidade/tratamento farmacológico , Receptor MT2 de Melatonina/genética , Receptores Adrenérgicos alfa 1/genética , Receptores de Prostaglandina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA