Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 2891, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31253791

RESUMO

Our ability to manage acute myeloid leukemia (AML) is limited by our incomplete understanding of the epigenetic disruption central to leukemogenesis, including improper histone methylation. Here we examine 16 histone H3 genes in 434 primary AML samples and identify Q69H, A26P, R2Q, R8H and K27M/I mutations (1.6%), with higher incidence in secondary AML (9%). These mutations occur in pre-leukemic hematopoietic stem cells (HSCs) and exist in the major leukemic clones in patients. They increase the frequency of functional HSCs, alter differentiation, and amplify leukemic aggressiveness. These effects are dependent on the specific mutation. H3K27 mutation increases the expression of genes involved in erythrocyte and myeloid differentiation with altered H3K27 tri-methylation and K27 acetylation. The functional impact of histone mutations is independent of RUNX1 mutation, although they at times co-occur. This study establishes that H3 mutations are drivers of human pre-cancerous stem cell expansion and important early events in leukemogenesis.


Assuntos
Epigenômica , Regulação Leucêmica da Expressão Gênica/fisiologia , Histonas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Animais , Animais Geneticamente Modificados , Antineoplásicos/farmacologia , Sequência de Bases , Células da Medula Óssea , Diferenciação Celular , Transformação Celular Neoplásica , DNA/genética , Drosophila melanogaster/genética , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Mutação , Neoplasias Experimentais
2.
Blood Cancer J ; 8(6): 52, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29921955

RESUMO

Therapy for acute myeloid leukemia (AML) involves intense cytotoxic treatment and yet approximately 70% of AML are refractory to initial therapy or eventually relapse. This is at least partially driven by the chemo-resistant nature of the leukemic stem cells (LSCs) that sustain the disease, and therefore novel anti-LSC therapies could decrease relapses and improve survival. We performed in silico analysis of highly prognostic human AML LSC gene expression signatures using existing datasets of drug-gene interactions to identify compounds predicted to target LSC gene programs. Filtering against compounds that would inhibit a hematopoietic stem cell (HSC) gene signature resulted in a list of 151 anti-LSC candidates. Using a novel in vitro LSC assay, we screened 84 candidate compounds at multiple doses and confirmed 14 drugs that effectively eliminate human AML LSCs. Three drug families presenting with multiple hits, namely antihistamines (astemizole and terfenadine), cardiac glycosides (strophanthidin, digoxin and ouabain) and glucocorticoids (budesonide, halcinonide and mometasone), were validated for their activity against human primary AML samples. Our study demonstrates the efficacy of combining computational analysis of stem cell gene expression signatures with in vitro screening to identify novel compounds that target the therapy-resistant LSC at the root of relapse in AML.


Assuntos
Biomarcadores Tumorais , Leucemia Mieloide Aguda/etiologia , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Neoplásicas/metabolismo , Apoptose/genética , Biomarcadores , Ciclo Celular/genética , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Biologia Computacional/métodos , Citarabina/farmacologia , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Terapia de Alvo Molecular , Células-Tronco Neoplásicas/efeitos dos fármacos , Transcriptoma
3.
Cell Stem Cell ; 16(3): 302-13, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25704240

RESUMO

Regulated blood production is achieved through the hierarchical organization of dormant hematopoietic stem cell (HSC) subsets that differ in self-renewal potential and division frequency, with long-term (LT)-HSCs dividing the least. The molecular mechanisms underlying this variability in HSC division kinetics are unknown. We report here that quiescence exit kinetics are differentially regulated within human HSC subsets through the expression level of CDK6. LT-HSCs lack CDK6 protein. Short-term (ST)-HSCs are also quiescent but contain high CDK6 protein levels that permit rapid cell cycle entry upon mitogenic stimulation. Enforced CDK6 expression in LT-HSCs shortens quiescence exit and confers competitive advantage without impacting function. Computational modeling suggests that this independent control of quiescence exit kinetics inherently limits LT-HSC divisions and preserves the HSC pool to ensure lifelong hematopoiesis. Thus, differential expression of CDK6 underlies heterogeneity in stem cell quiescence states that functionally regulates this highly regenerative system.


Assuntos
Divisão Celular/fisiologia , Simulação por Computador , Quinase 6 Dependente de Ciclina/biossíntese , Regulação Enzimológica da Expressão Gênica/fisiologia , Células-Tronco Hematopoéticas/enzimologia , Modelos Biológicos , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/citologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA