Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(3): 3665-3673, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38193383

RESUMO

Tunable electronic materials that can be switched between different impedance states are fundamental to the hardware elements for neuromorphic computing architectures. This "brain-like" computing paradigm uses highly paralleled and colocated data processing, leading to greatly improved energy efficiency and performance compared to traditional architectures in which data have to be frequently transferred between processor and memory. In this work, we use scanning microwave impedance microscopy for nanoscale electrical and electronic characterization of two-dimensional layered semiconductor PdSe2 to probe neuromorphic properties. The local resolution of tens of nanometers reveals significant differences in electronic behavior between and within PdSe2 nanosheets (NSs). In particular, we detected both n-type and p-type behaviors, although previous reports only point to ambipolar n-type dominating characteristics. Nanoscale capacitance-voltage curves and subsequent calculation of characteristic maps revealed a hysteretic behavior originating from the creation and erasure of Se vacancies as well as the switching of defect charge states. In addition, stacks consisting of two NSs show enhanced resistive and capacitive switching, which is attributed to trapped charge carriers at the interfaces between the stacked NSs. Stacking n- and p-type NSs results in a combined behavior that allows one to tune electrical characteristics. As local inhomogeneities of electrical and electronic behavior can have a significant impact on the overall device performance, the demonstrated nanoscale characterization and analysis will be applicable to a wide range of semiconducting materials.

2.
Adv Mater ; 35(20): e2211194, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36921328

RESUMO

Polarization dynamics in ferroelectric materials is governed by the effective potential energy landscape of the order parameter. The unique aspect of ferroelectrics compared to many other transitions is the possibility of more than two potential wells, leading to complicated energy landscapes with new fundamental and functional properties. Here, direct dynamic evidence is revealed of a triple-well potential in the metal thiophosphate Sn2 P2 S6 compound using multivariate scanning probe microscopy combined with theoretical simulations. The key finding is that the metastable zero polarization state can be accessed through a gradual switching process and is stabilized over a broad range of electric fields. Simulations confirm that the observed zero polarization state originates from a kinetic stabilization of the nonpolar state of the triple-well, as opposed to domain walls. Dynamically, the triple-well of Sn2 P2 S6 becomes equivalent to antiferroelectric hysteresis loops. Therefore, this material combines the robust and well-defined domain structure of a proper ferroelectric with dynamic hysteresis loops present in antiferroelectrics. Moreover, the triple-well enhances mem-capacitive effects in Sn2 P2 S6 , which are forbidden for ideal double-well ferroelectrics. These findings provide a path to tunable electronic elements for beyond binary high-density computing devices and neuromorphic circuits based on dynamic properties of the triple-well.

3.
ACS Appl Mater Interfaces ; 14(39): 44292-44302, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36129828

RESUMO

Interfacial mechanics are a significant contributor to the performance and degradation of solid-state batteries. Spatially resolved measurements of interfacial properties are extremely important to effectively model and understand the electrochemical behavior. Herein, we report the interfacial properties of thiophosphate (Li3PS4)- and argyrodite (Li6PS5Cl)-type solid electrolytes. Using atomic force microscopy, we showcase the differences in the surface morphology as well as adhesion of these materials. We also investigate solvent-less processing of hybrid electrolytes using UV-assisted curing. Physical, chemical, and structural characterizations of the materials highlight the differences in the surface morphology, chemical makeup, and distribution of the inorganic phases between the argyrodite and thiophosphate solid electrolytes.

4.
ACS Nano ; 16(9): 15347-15357, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-35998341

RESUMO

Van der Waals layered ferroelectrics, such as CuInP2S6 (CIPS), offer a versatile platform for miniaturization of ferroelectric device technologies. Control of the targeted composition and kinetics of CIPS synthesis enables the formation of stable self-assembled heterostructures of ferroelectric CIPS and nonferroelectric In4/3P2S6 (IPS). Here, we use quantitative scanning probe microscopy methods combined with density functional theory (DFT) to explore in detail the nanoscale variability in dynamic functional properties of the CIPS-IPS heterostructure. We report evidence of fast ionic transport which mediates an appreciable out-of-plane electromechanical response of the CIPS surface in the paraelectric phase. Further, we map the nanoscale dielectric and ionic conductivity properties as we thermally stimulate the ferroelectric-paraelectric phase transition, recovering the local dielectric behavior during this phase transition. Finally, aided by DFT, we reveal a substantial and tunable conductivity enhancement at the CIPS/IPS interface, indicating the possibility of engineering its interfacial properties for next generation device applications.

5.
ACS Nano ; 16(2): 2452-2460, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35129970

RESUMO

Antiferroelectric (AFE) materials, in which alternating dipole moments cancel out to a zero net macroscopic polarization, can be used for high-density energy storage and memory applications. The AFE phase can exist in bulk CuInP2Se6, CuBiP2S6, and a few other transition-metal thiophosphates below 200 K. The required low temperature poses challenges for practical applications. In this work, we report the coexistence of ferrielectric (FE) states and a stable surface phase that does not show piezoelectric response ("zero-response phase") in bulk CuInP2S6 at room temperature. Using piezoresponse force microscopy (PFM) tomographic imaging together with density functional theory, we find that direct and alternating voltages can locally and stably convert FE to zero-response phases and vice versa. While PFM loops show pinched hystereses reminiscent of antiferroelectricity, PFM tomography reveals that the zero-response areas form only on top of the FE phase in which the polarization vector is pointing up. Theoretical calculations suggest that the zero-response phase may correspond to AFE ordering where stacked CuInP2S6 layers have alternating polarization orientations thereby leading to a net-zero polarization. Consistent with experimental findings, theory predicts that the FE polarization pointing down is robust up to the top surface, whereas FE polarization pointing up energetically favors the formation of an AFE surface layer, whose thickness is likely to be sensitive to local strains. AFE order is likely to be more robust against detrimental size effects than polar order, therefore providing additional opportunities to create multifunctional heterostructures with 2D electronic materials.

6.
ACS Appl Mater Interfaces ; 14(2): 3018-3026, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34985251

RESUMO

The van der Waals layered material CuInP2S6 features interesting functional behavior, including the existence of four uniaxial polarization states, polarization reversal against the electric field through Cu ion migration, a negative-capacitance regime, and reversible extraction of Cu ions. At the heart of these characteristics lies the high mobility of Cu ions, which also determines the spontaneous polarization. Therefore, Cu migration across the lattice results in unusual ferroelectric behavior. Here, we demonstrate how the interplay of polar and ionic properties provides a path to ionically controlled ferroelectric behavior, achieved by applying selected DC voltage pulses and subsequently probing ferroelectric switching during fast triangular voltage sweeps. Using current measurements and theoretical calculations, we observe that increasing DC pulse duration results in higher ionic currents, the buildup of an internal electric field that shifts polarization loops, and an increase in total switchable polarization by ∼50% due to the existence of a high polarization phase which is stabilized by the internal electric field. Apart from tuning ferroelectric behavior by selected square pulses, hysteretic polarization switching can even be entirely deactivated and reactivated, resulting in three-state systems where polarization switching is either inhibited or can be performed in two different directions.

7.
Small Methods ; 5(12): e2100552, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34928037

RESUMO

Scanning Probe Microscopy (SPM) based techniques probe material properties over microscale regions with nanoscale resolution, ultimately resulting in investigation of mesoscale functionalities. Among SPM techniques, piezoresponse force microscopy (PFM) is a highly effective tool in exploring polarization switching in ferroelectric materials. However, its signal is also sensitive to sample-dependent electrostatic and chemo-electromechanical changes. Literature reports have often concentrated on the evaluation of the Off-field piezoresponse, compared to On-field piezoresponse, based on the latter's increased sensitivity to non-ferroelectric contributions. Using machine learning approaches incorporating both Off- and On-field piezoresponse response as well as Off-field resonance frequency to maximize information, switching piezoresponse in a defect-rich Pb(Zr,Ti)O3 thin film is investigated. As expected, one major contributor to the piezoresponse is mostly ferroelectric, coupled with electrostatic phenomena during On-field measurements. A second component is electrostatic in nature, while a third component is likely due to a superposition of multiple non-ferroelectric processes. The proposed approach will enable deeper understanding of switching phenomena in weakly ferroelectric samples and materials with large chemo-electromechanical response.

8.
Sci Adv ; 7(18)2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33910905

RESUMO

In past few decades, there have been substantial advances in theoretical material design and experimental synthesis, which play a key role in the steep ascent of developing functional materials with unprecedented properties useful for next-generation technologies. However, the ultimate goal of synthesis science, i.e., how to locate atoms in a specific position of matter, has not been achieved. Here, we demonstrate a unique way to inject elements in a specific crystallographic position in a composite material by strain engineering. While the use of strain so far has been limited for only mechanical deformation of structures or creation of elemental defects, we show another powerful way of using strain to autonomously control the atomic position for the synthesis of new materials and structures. We believe that our synthesis methodology can be applied to wide ranges of systems, thereby providing a new route to functional materials.

9.
Artigo em Inglês | MEDLINE | ID: mdl-32746203

RESUMO

The dependence of electromechanical behavior on strain in ferroelectric materials can be leveraged as parameter to tune ferroelectric properties such as the Curie temperature. For van der Waals materials, a unique opportunity arises because of wrinkling, bubbling, and Moiré phenomena accessible due to structural properties inherent to the van der Waals gap. Here, we use piezoresponse force microscopy and unsupervised machine learning methods to gain insight into the ferroelectric properties of layered CuInP2S6 where local areas are strained in-plane due to a partial delamination, resulting in a topographic bubble feature. We observe significant differences between strained and unstrained areas in piezoresponse images as well as voltage spectroscopy, during which strained areas show a sigmoid-shaped response usually associated with the response measured around the Curie temperature, indicating a lowering of the Curie temperature under tensile strain. These results suggest that strain engineering might be used to further increase the functionality of CuInP2S6 through locally modifying ferroelectric properties on the micro- and nanoscale.

10.
ACS Appl Mater Interfaces ; 12(34): 38546-38553, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32805973

RESUMO

CuInP2S6 (CIPS) is a van der Waals material that has attracted attention because of its unusual properties. Recently, a combination of density functional theory (DFT) calculations and piezoresponse force microscopy (PFM) showed that CIPS is a uniaxial quadruple-well ferrielectric featuring two polar phases and a total of four polarization states that can be controlled by external strain. Here, we combine DFT and PFM to investigate the stress-dependent piezoelectric properties of CIPS, which have so far remained unexplored. The two different polarization phases are predicted to differ in their mechanical properties and the stress sensitivity of their piezoelectric constants. This knowledge is applied to the interpretation of ferroelectric domain images, which enables investigation of local strain and stress distributions. The interplay of theory and experiment produces polarization maps and layer spacings which we compare to macroscopic X-ray measurements. We found that the sample contains only the low-polarization phase and that domains of one polarization orientation are strained, whereas domains of the opposite polarization direction are fully relaxed. The described nanoscale imaging methodology is applicable to any material for which the relationship between electromechanical and mechanical characteristics is known, providing insight on structural, mechanical, and electromechanical properties down to ∼10 nm length scales.

11.
J Mater Chem B ; 8(6): 1256-1265, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31960003

RESUMO

Sustainably made, flexible and biocompatible composites, having environmentally friendly compositions and multifunctional capabilities, are promising materials for several emerging biomedical applications. Here, the development of flexible and multifunctional chitosan-based bionanocomposites with a mixed reduced graphene oxide-iron oxide (rGO-Fe3-xO4) filler is described. The filler is prepared by one-pot synthesis, ensuring good dispersibility of the Fe3-xO4 nanoparticles and rGO within the chitosan matrix during solvent casting. The resulting bionanocomposites present superparamagnetic response at room temperature. The antioxidant activity is 9 times higher than that of pristine chitosan. The mechanical properties of the films can be tuned from elastic (∼8 MPa) chitosan films to stiff (∼285 MPa) bionanocomposite films with 50% filler. The magnetic hyperthermia tests showed a temperature increase of 40 °C in 45 s for the 50% rGO-Fe3-xO4 film. Furthermore, the composites have no cytotoxicity to the nontumorigenic (HaCat) cell line, which confirms their biocompatibility and highlights the potential of these materials for biomedical applications, such as hyperthermia treatments.


Assuntos
Antioxidantes/química , Materiais Biocompatíveis/química , Quitosana/química , Hipertermia Induzida , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Compostos Férricos/química , Grafite/química , Humanos , Tamanho da Partícula , Solubilidade , Propriedades de Superfície
12.
Nanoscale Adv ; 2(5): 2063-2072, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-36132496

RESUMO

With the advent of increasingly elaborate experimental techniques in physics, chemistry and materials sciences, measured data are becoming bigger and more complex. The observables are typically a function of several stimuli resulting in multidimensional data sets spanning a range of experimental parameters. As an example, a common approach to study ferroelectric switching is to observe effects of applied electric field, but switching can also be enacted by pressure and is influenced by strain fields, material composition, temperature, time, etc. Moreover, the parameters are usually interdependent, so that their decoupling toward univariate measurements or analysis may not be straightforward. On the other hand, both explicit and hidden parameters provide an opportunity to gain deeper insight into the measured properties, provided there exists a well-defined path to capture and analyze such data. Here, we introduce a new, two-dimensional approach to represent hysteretic response of a material system to applied electric field. Utilizing ferroelectric polarization as a model hysteretic property, we demonstrate how explicit consideration of electromechanical response to two rather than one control voltages enables significantly more transparent and robust interpretation of observed hysteresis, such as differentiating between charge trapping and ferroelectricity. Furthermore, we demonstrate how the new data representation readily fits into a variety of machine-learning methodologies, from unsupervised classification of the origins of hysteretic response via linear clustering algorithms to neural-network-based inference of the sample temperature based on the specific morphology of hysteresis.

13.
Nat Mater ; 19(1): 43-48, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31740791

RESUMO

The family of layered thio- and seleno-phosphates has gained attention as potential control dielectrics for the rapidly growing family of two-dimensional and quasi-two-dimensional electronic materials. Here we report a combination of density functional theory calculations, quantum molecular dynamics simulations and variable-temperature, -pressure and -bias piezoresponse force microscopy data to predict and verify the existence of an unusual ferroelectric property-a uniaxial quadruple potential well for Cu displacements-enabled by the van der Waals gap in copper indium thiophosphate (CuInP2S6). The calculated potential energy landscape for Cu displacements is strongly influenced by strain, accounting for the origin of the negative piezoelectric coefficient and rendering CuInP2S6 a rare example of a uniaxial multi-well ferroelectric. Experimental data verify the coexistence of four polarization states and explore the temperature-, pressure- and bias-dependent piezoelectric and ferroelectric properties, which are supported by bias-dependent molecular dynamics simulations. These phenomena offer new opportunities for both fundamental studies and applications in data storage and electronics.

14.
ACS Nano ; 13(8): 8760-8765, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31374166

RESUMO

A material with reversible temperature change capability under an external electric field, known as the electrocaloric effect (ECE), has long been considered as a promising solid-state cooling solution. However, electrocaloric (EC) performance of EC materials generally is not sufficiently high for real cooling applications. As a result, exploring EC materials with high performance is of great interest and importance. Here, we report on the ECE of ferroelectric materials with van der Waals layered structure (CuInP2S6 or CIPS in this work in particular). Over 60% polarization charge change is observed within a temperature change of only 10 K at Curie temperature. Large adiabatic temperature change (|ΔT|) of 3.3 K and isothermal entropy change (|ΔS|) of 5.8 J kg-1 K-1 at |ΔE| = 142.0 kV cm-1 and at 315 K (above and near room temperature) are achieved, with a large EC strength (|ΔT|/|ΔE|) of 29.5 mK cm kV-1. The ECE of CIPS is also investigated theoretically by numerical simulation, and a further EC performance projection is provided.

15.
ACS Appl Mater Interfaces ; 10(49): 42674-42680, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30457324

RESUMO

Relaxor ferroelectrics exhibit a range of interesting material behavior, including high electromechanical response, polarization rotations, as well as temperature and electric field-driven phase transitions. The origin of this unusual functional behavior remains elusive due to limited knowledge on polarization dynamics at the nanoscale. Piezoresponse force microscopy and associated switching spectroscopy provide access to local electromechanical properties on the micro- and nanoscale, which can help to address some of these gaps in our knowledge. However, these techniques are inherently prone to artefacts caused by signal contributions emanating from electrostatic interactions between tip and sample. Understanding functional behavior of complex, disordered systems like relaxor materials with unknown electromechanical properties therefore requires a technique that allows distinguishing between electromechanical and electrostatic response. Here, contact Kelvin probe force microscopy (cKPFM) is used to gain insight into the evolution of local electromechanical and capacitive properties of a representative relaxor material lead lanthanum zirconate across the phase transition from a ferroelectric to relaxor state. The obtained multidimensional data set was processed using an unsupervised machine learning algorithm to detect variations in functional response across the probed area and temperature range. Further analysis showed the formation of two separate cKPFM response bands below 50 °C, providing evidence for polarization switching. At higher temperatures only one band is observed, indicating an electrostatic origin of the measured response. In addition, the junction potential difference, which was extracted from the cKPFM data, becomes independent of the temperature in the relaxor state. The combination of this multidimensional voltage spectroscopy technique and machine learning allows to identify the origin of the measured functional response and to decouple ferroelectric from electrostatic phenomena necessary to understand the functional behavior of complex, disordered systems like relaxor materials.

16.
ACS Appl Mater Interfaces ; 10(34): 29153-29160, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30062871

RESUMO

Polarization switching in ferroelectric materials underpins a multitude of applications ranging from nonvolatile memories to data storage to ferroelectric lithography. While traditionally considered to be a functionality of the material only, basic theoretical considerations suggest that switching is expected to be intrinsically linked to changes in the electrochemical state of the surface. Hence, the properties and dynamics of the screening charges can affect or control the switching dynamics. Despite being recognized for over 50 years, analysis of these phenomena remained largely speculative. Here, we explore polarization switching on the prototypical LiNbO3 surface using the combination of contact mode Kelvin probe force microscopy and chemical imaging by time-of-flight mass-spectrometry and demonstrate pronounced chemical differences between the domains. These studies provide a consistent explanation to the anomalous polarization and surface charge behavior observed in LiNbO3 and point to new opportunities in chemical control of polarization dynamics in thin films and crystals via control of surface chemistry, complementing traditional routes via bulk doping, and substrate-induced strain and tilt systems.

17.
ACS Appl Mater Interfaces ; 10(32): 27188-27194, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30033718

RESUMO

Metal thiophosphates are attracting growing attention in the context of quasi-two-dimensional van der Waals functional materials. Alkali thiophosphates are investigated as ion conductors for solid electrolytes, and transition-metal thiophosphates are explored as a new class of ferroelectric materials. For the latter, a representative copper indium thiophosphate is ferrielectric at room temperature and, despite low polarization, exhibits giant negative electrostrictive coefficients. Here, we reveal that ionic conductivity in this material enables localized extraction of Cu ions from the lattice with a biased scanning probe microscopy tip, which is surprisingly reversible. The ionic conduction is tracked through local volume changes with a scanning probe microscopy tip providing a current-free probing technique, which can be explored for other thiophosphates of interest. Nearly 90 nm-tall crystallites can be formed and erased reversibly on the surface of this material as a result of ionic motion, the size of which can be sensitively controlled by both magnitude and frequency of the electric field, as well as the ambient temperature. These experimental results and density functional theory calculations point to a remarkable resilience of CuInP2S6 to large-scale ionic displacement and Cu vacancies, in part enabled by the metastability of Cu-deficient phases. Furthermore, we have found that the piezoelectric response of CuInP2S6 is enhanced by about 45% when a slight ionic modification is carried out with applied field. This new mode of modifying the lattice of CuInP2S6, and more generally ionically conducting thiophosphates, posits new prospects for their applications in van der Waals heterostructures, possibly in the context of catalytic or electronic functionalities.

18.
Sci Technol Adv Mater ; 18(1): 172-179, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28458741

RESUMO

Nanocomposites of diphenylalanine (FF) and carbon based materials provide an opportunity to overcome drawbacks associated with using FF micro- and nanostructures in nanobiotechnology applications, in particular their poor structural stability in liquid solutions. In this study, FF/graphene oxide (GO) composites were found to self-assemble into layered micro- and nanostructures, which exhibited improved thermal and aqueous stability. Dependent on the FF/GO ratio, the solubility of these structures was reduced to 35.65% after 30 min as compared to 92.4% for pure FF samples. Such functional nanocomposites may extend the use of FF structures to e.g. biosensing, electrochemical, electromechanical or electronic applications.

19.
ACS Biomater Sci Eng ; 2(8): 1351-1356, 2016 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-33434988

RESUMO

Photodeposition of silver nanoparticles onto chemically patterned lithium niobate having alternating lithium niobate and proton exchanged regions has been previously investigated. Here, the spatially defined photodeposition of gold nanoparticles onto periodically proton exchanged lithium niobate is demonstrated. It is shown that the location where the gold nanoparticles form can be tailored by altering the concentration of HAuCl4. This enables the possibility to sequentially deposit gold and silver in different locations to create bimetallic arrays. The cytocompatibility of photodeposited gold, silver, and bimetallic ferroelectric templates to osteoblast-like cells is also investigated. Gold samples provide significantly greater cell biocompatibility than silver samples. These results highlight a potential route for using photodeposited gold on lithium niobate as a template for applications in cellular biosensing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA