Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 213: 470-487, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38301978

RESUMO

The NTHL1 and NEIL1-3 DNA glycosylases are major enzymes in the removal of oxidative DNA base lesions, via the base excision repair (BER) pathway. It is expected that lack of these DNA glycosylases activities would render cells vulnerable to oxidative stress, promoting cell death. Intriguingly, we found that single, double, triple, and quadruple DNA glycosylase knockout HAP1 cells are, however, more resistant to oxidative stress caused by genotoxic agents than wild type cells. Furthermore, glutathione depletion in NEIL deficient cells further enhances resistance to cell death induced via apoptosis and ferroptosis. Finally, we observed higher basal level of glutathione and differential expression of NRF2-regulated genes associated with glutathione homeostasis in the NEIL triple KO cells. We propose that lack of NEIL DNA glycosylases causes aberrant transcription and subsequent errors in protein synthesis. This leads to increased endoplasmic reticulum stress and proteotoxic stress. To counteract the elevated intracellular stress, an adaptive response mediated by increased glutathione basal levels, rises in these cells. This study reveals an unforeseen role of NEIL glycosylases in regulation of resistance to oxidative stress, suggesting that modulation of NEIL glycosylase activities is a potential approach to improve the efficacy of e.g. anti-inflammatory therapies.


Assuntos
DNA Glicosilases , Reparo do DNA , Reparo do DNA/genética , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Estresse Oxidativo/genética , Dano ao DNA/genética , Apoptose/genética
2.
Biochim Biophys Acta ; 1833(5): 1157-64, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23305905

RESUMO

7,8-Dihydro-8-oxoguanine (8-oxoG) is one of the most common oxidative base lesions in normal tissues induced by a variety of endogenous and exogenous agents. Hydantoins are products of 8-oxoG oxidation and as 8-oxoG, they have been shown to be mutagenic lesions. Oxidative DNA damage has been implicated in the etiology of various age-associated pathologies, such as cancer, cardiovascular diseases, arthritis, and several neurodegenerative diseases. The mammalian endonuclease VIII-like 3 (Neil3) is one of the four DNA glycosylases found to recognize and remove hydantoins in the first step of base excision repair (BER) pathway. We have generated mice lacking Neil3 and by using total cell extracts we demonstrate that Neil3 is the main DNA glycosylase that incises hydantoins in single stranded DNA in tissues. Using the neurosphere culture system as a model to study neural stem/progenitor (NSPC) cells we found that lack of Neil3 impaired self renewal but did not affect differentiation capacity. Proliferation was also reduced in mouse embryonic fibroblasts (MEFs) derived from Neil3(-/-) embryos and these cells were sensitive to both the oxidative toxicant paraquat and interstrand cross-link (ICL)-inducing agent cisplatin. Our data support the involvement of Neil3 in removal of replication blocks in proliferating cells.


Assuntos
Dano ao DNA , Hidantoínas/metabolismo , N-Glicosil Hidrolases , Animais , Proliferação de Células/efeitos dos fármacos , Cisplatino/administração & dosagem , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Reparo do DNA/genética , Replicação do DNA/genética , DNA de Cadeia Simples/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Guanina/análogos & derivados , Guanina/química , Guanina/metabolismo , Hidantoínas/química , Camundongos , N-Glicosil Hidrolases/genética , N-Glicosil Hidrolases/metabolismo
3.
DNA Repair (Amst) ; 11(4): 401-9, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22365498

RESUMO

Base excision repair (BER) is believed to be the predominant pathway for the repair of oxidative DNA damage. BER is initiated by lesion-specific DNA glycosylases that recognize and remove the damaged base. NEIL1, NEIL2 and NEIL3 are three mammalian members of the Fpg/Nei DNA glycosylase family with similar enzymatic properties. In this study we showed that both the transcription and protein levels of hNEIL3 fluctuated during the cell cycle. Based on predicted promoter elements of cell cycle-regulated genes and microarray data from various reports, we suggest that hNEIL3 repression in quiescent cells might be mediated by the DREAM (DP1, RB p130, E2F4 and MuvB core complex) complex. Release from G0 by mitogenic stimulation showed an induction of hNEIL3 in early S phase under the control of the Ras dependent ERK-MAP kinase pathway. In contrast, the total expression of hNEIL1 was downregulated upon release from quiescence while the expression of hNEIL2 was cell cycle independent. Notably, hNEIL3 showed a similar regulation pattern as the replication protein hFEN1 supporting a function of hNEIL3 in replication associated repair. Thus, it appears that specialized functions of the NEILs are ensured by their expression patterns.


Assuntos
Ciclo Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica , Sistema de Sinalização das MAP Quinases , N-Glicosil Hidrolases/genética , N-Glicosil Hidrolases/metabolismo , Proteínas ras/metabolismo , Linhagem Celular , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Humanos , Regiões Promotoras Genéticas/genética , Proteína do Retinoblastoma/metabolismo , Transcrição Gênica
4.
Toxins (Basel) ; 2(1): 95-115, 2010 01.
Artigo em Inglês | MEDLINE | ID: mdl-22069549

RESUMO

INFLAMMATORY MEDIATORS TRIGGER POLYMORPHONUCLEAR NEUTROPHILS (PMN) TO PRODUCE REACTIVE OXYGEN SPECIES (ROS: O(2) (-), H(2)O(2), ∙OH). Mediated by myeloperoxidase in PMN, HOCl is formed, detectable in a chemiluminescence (CL) assay. We have shown that the abundant cytosolic PMN protein calprotectin (S100A8/A9) similarly elicits CL in response to H(2)O(2) in a cell-free system. Myeloperoxidase and calprotectin worked synergistically. Calprotectin-induced CL increased, whereas myeloperoxidase-triggered CL decreased with pH > 7.5. Myeloperoxidase needed NaCl for CL, calprotectin did not. 4-hydroxybenzoic acid, binding ∙OH, almost abrogated calprotectin CL, but moderately increased myeloperoxidase activity. The combination of native calprotectin, or recombinant S100A8/A9 proteins, with NaOCl markedly enhanced CL. NaOCl may be the synergistic link between myeloperoxidase and calprotectin. Surprisingly- and unexplained- at higher concentration of S100A9 the stimulation vanished, suggesting a switch from pro-oxidant to anti-oxidant function. We propose that the ∙OH is predominant in ROS production by calprotectin, a function not described before.


Assuntos
Peroxidase , Espécies Reativas de Oxigênio , Calgranulina B , Peróxido de Hidrogênio , Complexo Antígeno L1 Leucocitário , Neutrófilos , Espécies Reativas de Oxigênio/metabolismo
5.
DNA Repair (Amst) ; 7(6): 869-78, 2008 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18406215

RESUMO

The capacity for DNA repair is likely to be one of the factors that determine the vulnerability of neurons to ischemic stress and may influence the pathological outcome of stroke. In this report, initiation of base excision repair (BER) was assessed by analysis of enzyme activity and gene expression level of DNA glycosylases and AP-endonucleases in rat organotypic hippocampal slice cultures exposed to oxygen and glucose deprivation (OGD) - an in vitro model of stroke. Under basal conditions, AP-endonuclease activity and base removal of ethenoadenine and 8-oxoguanine (8-oxoG) were higher (by approximately 20-35 %) in CA3/fascia dentata (FD) than in CA1. Base removal of uracil did not differ between the two hippocampal regions, while removal of 5-hydroxyuracil (5-OHU) was slightly less efficient in CA3/FD than in CA1. Analyses performed immediately after 30 min of OGD revealed a decreased AP-endonuclease activity (by approximately 20%) in CA1 as well as CA3/FD, and an increased ethenoadenine activity (by approximately 25%) in CA1. Activities for 8-oxoG, 5-OHU and uracil showed no significant changes at this time point. At 8h after OGD, none of the enzyme activities differed from control values. Real-time RT-PCR showed that transcription of DNA glycosylases, including Ogg1, Nth1, Ung, Aag, Neil1 and Neil2 were not changed in response to OGD treatment (t=0 h). The hippocampal expression of Neil2 was low compared with the other DNA glycosylases. These data indicate that CA1 has a lower capacity than CA3/FD for removal of base lesions under basal conditions. The relatively low capacity for BER in basal conditions and the apparent failure to upregulate repair of oxidative damage after OGD might contribute to the high vulnerability of CA1 to ischemic injury.


Assuntos
Reparo do DNA , Glucose/metabolismo , Hipocampo/metabolismo , Oxigênio/metabolismo , Animais , Sequência de Bases , Morte Celular , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Primers do DNA , Hipocampo/citologia , Técnicas de Cultura de Órgãos , RNA Mensageiro/genética , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA