Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Microbiol Methods ; 178: 106049, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32891633

RESUMO

Hydro-meteorological conditions facilitate transport of fecal indicator bacteria (FIB) to the nearshore environment, affecting recreational water quality. North Beach (Racine, Wisconsin, United States), is an exemplar public beach site along Lake Michigan, where precipitation-mediated surface runoff, wave encroachment, stormwater and tributary outflow were demonstrated to contribute to beach advisories. Multiple restoration actions, including installation of a stormwater retention wetland, were successfully deployed to improve recreational water quality. Implementation of molecular methods (e.g. human microbial source tracking markers and Escherichia coli (E. coli) qPCR) assisted in identifying potential pollution sources and improving public health response time. However, periodic water quality failures still occur. As local beach managers reassess restoration measures in response to climatic changes, use of expanded microbial methods (including bacterial community profiling) may contribute to a better understanding of these dynamic environments. In this 2-year study (2015 and 2019), nearshore/offshore Lake Michigan, stormwater, and tributary samples were collected to determine if, 1) the constructed wetland (~50 m from the shoreline) continued to provide stormwater separation/retention and 2) mixing between onshore sources, Root River and Lake Michigan, was increasing due to rising precipitation/lake levels. Monthly rainfall totals were 1.5× higher in 2019 than 2015, coinciding with a 0.63 m lake-level rise. The prevalence of more intense, onshore winds also increased, facilitating interaction between potential reservoirs of FIB with nearshore water through wind driven waves and lake intrusion, e.g. beach sands and the adjacent Root River. While a strong relationship existed between wet weather wetland and North Beach nearshore E. coli concentrations (all sites), bacterial communities were strikingly different. Conversely, bacterial community overlap existed between the Root River mouth and nearshore/offshore sites. These results suggest the constructed wetland can accommodate the climate-related changes observed in this study. Future restoration activities could be directed towards upstream tributary sources in order to minimize microbial contaminants entering Lake Michigan.

2.
Sci Total Environ ; 472: 1062-9, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24355396

RESUMO

Beaches worldwide provide recreational opportunities to hundreds of millions of people and serve as important components of coastal economies. Beach water is often monitored for microbiological quality to detect the presence of indicators of human sewage contamination so as to prevent public health outbreaks associated with water contact. However, growing evidence suggests that beach sand can harbor microbes harmful to human health, often in concentrations greater than the beach water. Currently, there are no standards for monitoring, sampling, analyzing, or managing beach sand quality. In addition to indicator microbes, growing evidence has identified pathogenic bacteria, viruses, and fungi in a variety of beach sands worldwide. The public health threat associated with these populations through direct and indirect contact is unknown because so little research has been conducted relating to health outcomes associated with sand quality. In this manuscript, we present the consensus findings of a workshop of experts convened in Lisbon, Portugal to discuss the current state of knowledge on beach sand microbiological quality and to develop suggestions for standardizing the evaluation of sand at coastal beaches. The expert group at the "Microareias 2012" workshop recommends that 1) beach sand should be screened for a variety of pathogens harmful to human health, and sand monitoring should then be initiated alongside regular water monitoring; 2) sampling and analysis protocols should be standardized to allow proper comparisons among beach locations; and 3) further studies are needed to estimate human health risk with exposure to contaminated beach sand. Much of the manuscript is focused on research specific to Portugal, but similar results have been found elsewhere, and the findings have worldwide implications.


Assuntos
Praias , Monitoramento Ambiental/métodos , Sedimentos Geológicos/microbiologia , Água do Mar/microbiologia , Monitoramento Ambiental/normas , Política Ambiental , Política de Saúde , Humanos , Portugal , Saúde Pública , Medição de Risco , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA