Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(2)2023 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-36851651

RESUMO

In Brazil, a yellow fever (YF) outbreak was reported in areas considered YF-free for decades. The low vaccination coverage and the increasing forest fragmentation, with the wide distribution of vector mosquitoes, have been related to yellow fever virus (YFV) transmission beyond endemic areas since 2016. Aiming to elucidate the molecular and phylogenetic aspects of YFV spread on a local scale, we generated 43 new YFV genomes sampled from humans, non-human primates (NHP), and primarily, mosquitoes from highly heterogenic areas in 15 localities from Rio de Janeiro (RJ) state during the YFV 2016-2019 outbreak in southeast Brazil. Our analysis revealed that the genetic diversity and spatial distribution of the sylvatic transmission of YFV in RJ originated from at least two introductions and followed two chains of dissemination, here named the YFV RJ-I and YFV RJ-II clades. They moved with similar dispersal speeds from the north to the south of the RJ state in parallel directions, separated by the Serra do Mar Mountain chain, with YFV RJ-I invading the north coast of São Paulo state. The YFV RJ-I clade showed a more significant heterogeneity across the entire polyprotein. The YFV RJ-II clade, with only two amino acid polymorphisms, mapped at NS1 (I1086V), present only in mosquitoes at the same locality and NS4A (I2176V), shared by all YFV clade RJ-II, suggests a recent clustering of YFV isolates collected from different hosts. Our analyses strengthen the role of surveillance, genomic analyses of YVF isolated from other hosts, and environmental studies into the strategies to forecast, control, and prevent yellow fever outbreaks.


Assuntos
Culicidae , Febre Amarela , Animais , Vírus da Febre Amarela/genética , Febre Amarela/epidemiologia , Brasil/epidemiologia , Filogenia , Mosquitos Vetores , Florestas
2.
Viruses ; 14(12)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36560809

RESUMO

Evidence of sylvatic yellow fever was first reported in Atlantic Forest areas in Espírito Santo, Brazil, during a yellow fever virus (YFV) outbreak in 1931. An entomological survey was conducted in six forest sites during and after an outbreak reported ~80 years after the last case in the area. Among 10,658 mosquitoes of 78 species, Haemagogus leucocelaenus, and Hg. janthinomys/capricornii were considered the main vectors as they had a relatively high abundance, co-occurred in essentially all areas, and showed high YFV infection rates. Sabethes chloropterus, Sa. soperi, Sa. identicus, Aedes aureolineatus, and Shannoniana fluviatilis may have a secondary role in transmission. This is the first report of Sa. identicus, Ae. aureolineatus, and Sh. fluviatilis infected with YFV. Our study emphasizes the importance of entomological monitoring and maintenance of high vaccination coverage in receptive areas to YFV transmission.


Assuntos
Aedes , Culicidae , Febre Amarela , Animais , Humanos , Febre Amarela/epidemiologia , Brasil/epidemiologia , Vírus da Febre Amarela , Surtos de Doenças
3.
Malar J ; 21(1): 13, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35027049

RESUMO

BACKGROUND: Malaria control requires local action. Assessing the vector diversity and abundance provides information on the local malariogenic potential or risk of transmission. This study aimed to determine the Anopheles species composition, habitats, seasonal occurrence, and distribution in areas with autochthonous and imported malaria cases in Roraima State. METHODS: A longitudinal study was conducted from January 2017 to October 2018, sampling larvae and adult mosquitoes in three municipalities of Roraima State: Boa Vista, Pacaraima and São João da Baliza. These areas have different risks of malaria importation. Four to six mosquito larval habitats were selected for larval sampling at each municipality, along with two additional sites for adult mosquito collection. All larval habitats were surveyed every two months using a standardized larval sampling methodology and MosqTent for adult mosquitoes. RESULTS: A total of 544 Anopheles larvae and 1488 adult mosquitoes were collected from the three municipalities studied. Although the species abundance differed between municipalities, the larvae of Anopheles albitarsis s.l., Anopheles nuneztovari s.l. and Anopheles triannulatus s.l. were collected from all larval habitats studied while Anopheles darlingi were collected only from Boa Vista and São João da Baliza. Adults of 11 species of the genus Anopheles were collected, and the predominant species in Boa Vista was An. albitarsis (88.2%) followed by An. darlingi (6.9%), while in São João da Baliza, An. darlingi (85.6%) was the most predominant species followed by An. albitarsis s.l. (9.2%). In contrast, the most abundant species in Pacaraima was Anopheles braziliensis (62%), followed by Anopheles peryassui (18%). Overall, the majority of anophelines exhibited greater extradomicile than peridomicile-biting preference. Anopheles darlingi was the only species found indoors. Variability in biting times was observed among species and municipalities. CONCLUSION: This study revealed the composition of anopheline species and habitats in Boa Vista, Pacaraima and São João da Baliza. The species sampled differed in their behaviour with only An. darlingi being found indoors. Anopheles darlingi appeared to be the most important vector in São João da Baliza, an area of autochthonous malaria, and An. albitarsis s.l. and An. braziliensis in areas of low transmission, although there were increasing reports of imported malaria. Understanding the diversity of vector species and their ecology is essential for designing effective vector control strategies for these municipalities.


Assuntos
Anopheles/fisiologia , Ecossistema , Geografia , Larva/fisiologia , Malária/parasitologia , Mosquitos Vetores/fisiologia , Estações do Ano , Animais , Brasil/epidemiologia , Estudos Longitudinais , Malária/epidemiologia
4.
Parasit Vectors ; 15(1): 23, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35012637

RESUMO

BACKGROUND: Yellow fever virus (YFV) is an arbovirus that, despite the existence of a safe and effective vaccine, continues to cause outbreaks of varying dimensions in the Americas and Africa. Between 2017 and 2019, Brazil registered un unprecedented sylvatic YFV outbreak whose severity was the result of its spread into zones of the Atlantic Forest with no signals of viral circulation for nearly 80 years. METHODS: To investigate the influence of climatic, environmental, and ecological factors governing the dispersion and force of infection of YFV in a naïve area such as the landscape mosaic of Rio de Janeiro (RJ), we combined the analyses of a large set of data including entomological sampling performed before and during the 2017-2019 outbreak, with the geolocation of human and nonhuman primates (NHP) and mosquito infections. RESULTS: A greater abundance of Haemagogus mosquitoes combined with lower richness and diversity of mosquito fauna increased the probability of finding a YFV-infected mosquito. Furthermore, the analysis of functional traits showed that certain functional groups, composed mainly of Aedini mosquitoes which includes Aedes and Haemagogus mosquitoes, are also more representative in areas where infected mosquitoes were found. Human and NHP infections were more common in two types of landscapes: large and continuous forest, capable of harboring many YFV hosts, and patches of small forest fragments, where environmental imbalance can lead to a greater density of the primary vectors and high human exposure. In both, we show that most human infections (~ 62%) occurred within an 11-km radius of the finding of an infected NHP, which is in line with the flight range of the primary vectors. CONCLUSIONS: Together, our data suggest that entomological data and landscape composition analyses may help to predict areas permissive to yellow fever outbreaks, allowing protective measures to be taken to avoid human cases.


Assuntos
Brasil , Culicidae , Surtos de Doenças , Mosquitos Vetores , Febre Amarela/transmissão , Aedes/crescimento & desenvolvimento , Aedes/virologia , Animais , Biodiversidade , Brasil/epidemiologia , Clima , Culicidae/crescimento & desenvolvimento , Culicidae/virologia , Florestas , Humanos , Mosquitos Vetores/classificação , Mosquitos Vetores/crescimento & desenvolvimento , Mosquitos Vetores/virologia , Fatores de Risco , Febre Amarela/epidemiologia
5.
Genes (Basel) ; 12(12)2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34946944

RESUMO

Identifying the species of the subfamily Anophelinae that are Plasmodium vectors is important to vector and malaria control. Despite the increase in cases, vector mosquitoes remain poorly known in Brazilian indigenous communities. This study explores Anophelinae mosquito diversity in the following areas: (1) a Yanomami reserve in the northwestern Amazon Brazil biome and (2) the Pantanal biome in southwestern Brazil. This is carried out by analyzing cytochrome c oxidase (COI) gene data using Refined Single Linkage (RESL), Assemble Species by Automatic Partitioning (ASAP), and tree-based multi-rate Poisson tree processes (mPTP) as species delimitation approaches. A total of 216 specimens collected from the Yanomami and Pantanal regions were sequenced and combined with 547 reference sequences for species delimitation analyses. The mPTP analysis for all sequences resulted in the delimitation of 45 species groups, while the ASAP analysis provided the partition of 48 groups. RESL analysis resulted in 63 operational taxonomic units (OTUs). This study expands our scant knowledge of anopheline species in the Yanomami and Pantanal regions. At least 18 species of Anophelinae mosquitoes were found in these study areas. Additional studies are now required to determine the species that transmit Plasmodium spp. in these regions.


Assuntos
Anopheles/genética , Mosquitos Vetores/genética , Plasmodium/parasitologia , Animais , Brasil/epidemiologia , Vetores de Doenças , Malária/transmissão , Mosquitos Vetores/metabolismo , Plasmodium/genética , Especificidade da Espécie
6.
Zootaxa ; 4789(2): zootaxa.4789.2.12, 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-33056442

RESUMO

Sabethes (Sabethoides) glaucodaemon was described for the first time by Dyar Shannon (1925) based on the adult female. Later, descriptions of the male genitalia and parts of the fourth-instar larva and pupa were published by other authors. No one has described the female genitalia or made a complete description of the larva and pupa. The aim of this study was to redescribe Sa. glaucodaemon in the adult stage, including the male and female genitalia, and the pupa and fourth-instar larva. All stages are illustrated. Distinctions from Sa. (Sbo.) tridentatus are discussed.


Assuntos
Culicidae , Animais , Feminino , Genitália Feminina , Genitália Masculina , Larva , Masculino , Pupa
7.
Neotrop Entomol ; 49(5): 662-667, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32588393

RESUMO

The oviposition behavior of mosquitoes varies between species. We documented the unusual mechanism of egg laying in the mosquito Sabethes albiprivus Theobald with the aid of high speed video recordings in the laboratory. A sapucaia (Lecythis pisonis Camb.) nut oviposition trap, described herein, was used to simulate a tree hole with a small opening, which is the natural larval habitat of Sa. albiprivus. We showed that females approach the opening and perform a sequence of rapid, short up-and-down flights before egg laying. At this time, the egg is already visible externally, being held at the very tip of the abdomen. Females catapult one egg at a time by rapidly curling their abdomen downward, sending the egg through the opening while their legs are positioned in different configurations throughout the event. The estimated velocity of the catapulted eggs was almost 1 m/s.


Assuntos
Culicidae/fisiologia , Oviposição , Gravação em Vídeo , Animais , Feminino , Óvulo
8.
Viruses ; 12(4)2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32224891

RESUMO

In the last decade, Flaviviruses such as yellow fever (YFV) and Zika (ZIKV) have expanded their transmission areas. These viruses originated in Africa, where they exhibit both sylvatic and interhuman transmission cycles. In Brazil, the risk of YFV urbanization has grown, with the sylvatic transmission approaching the most densely populated metropolis, while concern about ZIKV spillback to a sylvatic cycle has risen. To investigate these health threats, we carried out extensive collections and arbovirus screening of 144 free-living, non-human primates (NHPs) and 5219 mosquitoes before, during, and after ZIKV and YFV outbreaks (2015-2018) in southeast Brazil. ZIKV infection was not detected in any NHP collected at any time. In contrast, current and previous YFV infections were detected in NHPs sampled between 2017 and 2018, but not before the onset of the YFV outbreak. Mosquito pools screened by high-throughput PCR were positive for YFV when captured in the wild and during the YFV outbreak, but were negative for 94 other arboviruses, including ZIKV, regardless of the time of collection. In conclusion, there was no evidence of YFV transmission in coastal southeast Brazil before the current outbreak, nor the spread or establishment of an independent sylvatic cycle of ZIKV or urban Aedes aegypti transmission of YFV in the region. In view of the region's receptivity and vulnerability to arbovirus transmission, surveillance of NHPs and mosquitoes should be strengthened and continuous.


Assuntos
Surtos de Doenças , Febre Amarela/transmissão , Febre Amarela/virologia , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia , Animais , Brasil/epidemiologia , Genoma Viral , Genótipo , Mosquitos Vetores/virologia , Primatas/virologia , Febre Amarela/epidemiologia , Vírus da Febre Amarela , Zika virus , Infecção por Zika virus/epidemiologia
9.
Front Microbiol ; 10: 1079, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31178835

RESUMO

The current outbreak of yellow fever virus (YFV) that is afflicting Brazil since the end of 2016 probably originated from a re-introduction of YFV from endemic areas into the non-endemic Southeastern Brazil. However, the lack of genomic sequences from endemic regions hinders the tracking of YFV's dissemination routes. We assessed the origin and spread of the ongoing YFV Brazilian outbreak analyzing a new set of YFV strains infecting humans, non-human primates (NHPs) and mosquitoes sampled across five Brazilian states from endemic and non-endemic regions between 2015 and 2018. We found two YFV sub-clade 1E lineages circulating in NHP from Goiás state (GO), resulting from independent viral introductions into the Araguaia tributary river basin: while one strain from 2017 clustered intermingled with Venezuelan YFV strains from 2000, the other YFV strains sampled in 2015 and 2017 clustered with sequences of the current YFV outbreak in the Brazilian Southeastern region (named YFV2015-2018 lineage), displaying the same molecular signature associated to the current YFV outbreak. After its introduction in GO at around mid-2014, the YFV2015-2018 lineage followed two paths of dissemination outside GO, originating two major YFV sub-lineages: (1) the YFVMG/ES/RJ sub-lineage spread sequentially from the eastern area of Minas Gerais state to Espírito Santo and then to Rio de Janeiro states, following the Southeast Atlantic basin; (2) the YFVMG/SP sub-lineage spread from the southwestern area of Minas Gerais to the metropolitan region of São Paulo state, following the Paraná basin. These results indicate the ongoing YFV outbreak in Southeastern Brazil originated from a dissemination event from GO almost 2 years before its recognition at the end of 2016. From GO this lineage was introduced in Minas Gerais state at least two times, originating two sub-lineages that followed different routes toward densely populated areas. The spread of YFV outside endemic regions for at least 4 years stresses the imperative importance of the continuous monitoring of YFV to aid decision-making for effective control policies aiming the increase of vaccination coverage to avoid the YFV transmission in densely populated urban centers.

10.
Emerg Microbes Infect ; 8(1): 218-231, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30866775

RESUMO

The yellow fever virus (YFV) caused a severe outbreak in Brazil in 2016-2018 that rapidly spread across the Atlantic Forest in its most populated region without viral circulation for almost 80 years. A comprehensive entomological survey combining analysis of distribution, abundance and YFV natural infection in mosquitoes captured before and during the outbreak was conducted in 44 municipalities of five Brazilian states. In total, 17,662 mosquitoes of 89 species were collected. Before evidence of virus circulation, mosquitoes were tested negative but traditional vectors were alarmingly detected in 82% of municipalities, revealing high receptivity to sylvatic transmission. During the outbreak, five species were found positive in 42% of municipalities. Haemagogus janthinomys and Hg. leucocelaenus are considered the primary vectors due to their large distribution combined with high abundance and natural infection rates, concurring together for the rapid spread and severity of this outbreak. Aedes taeniorhynchus was found infected for the first time, but like Sabethes chloropterus and Aedes scapularis, it appears to have a potential local or secondary role because of their low abundance, distribution and infection rates. There was no evidence of YFV transmission by Aedes albopictus and Aedes aegypti, although the former was the most widespread species across affected municipalities, presenting an important overlap between the niches of the sylvatic vectors and the anthropic ones. The definition of receptive areas, expansion of vaccination in the most affected age group and exposed populations and the adoption of universal vaccination to the entire Brazilian population need to be urgently implemented.


Assuntos
Surtos de Doenças , Mosquitos Vetores/classificação , Febre Amarela/epidemiologia , Febre Amarela/transmissão , Animais , Brasil/epidemiologia , Cidades , Feminino , Masculino , Mosquitos Vetores/virologia , Filogeografia , Dinâmica Populacional , Vírus da Febre Amarela
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA