Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
3.
Artigo em Inglês | MEDLINE | ID: mdl-35640792

RESUMO

Subzero temperatures are among the most significant factors defining the distribution of organisms, yet, certain taxa have evolved to overcome this barrier. The microscopic tardigrades are among the most freeze-tolerant animals, with selected species reported to survive milli-Kelvin temperatures. Here, we estimate survival of fully hydrated eutardigrades of the species Ramazzottius varieornatus following exposures to -20 °C and  -80 °C as well as -196 °C with or without initial cooling to -80 °C. The tardigrades easily survive these temperatures, yet with a significant decrease in viability following rapid cooling by direct exposure to -196 °C. Hence, post-freeze recovery of R. varieornatus seems to rely on cooling rate and thus controlled ice formation. Cryophilic organisms are renowned for having cold-active enzymes that secure appropriate reaction rates at low temperatures. Hence, extreme freeze-tolerance in R. varieornatus could potentially involve syntheses of cryoprotectants and de novo transcription. We therefore generated a reference transcriptome for this cryophilic R. varieornatus population and explored for differential gene expression patterns following cooling to -80 °C as compared to active 5 °C controls. Specifically, we tested for fast transcription potentially occurring within 25 min of cooling from room temperature to a supercooling point of ca. -20 °C, at which the tardigrades presumably freeze and enter into the ametabolic state of cryobiosis. Our analyses revealed no evidence for differential gene expression. We, therefore, conclude that extreme freeze-tolerance in R. varieornatus relies on controlled extracellular freezing with any freeze-tolerance related genes being constitutively expressed.


Assuntos
Gelo , Tardígrados , Animais , Temperatura Baixa , Congelamento , Tardígrados/genética , Temperatura
4.
Artigo em Inglês | MEDLINE | ID: mdl-35182765

RESUMO

Tardigrades are renowned for their extreme stress tolerance, which includes the ability to endure complete desiccation, high levels of radiation and very low sub-zero temperatures. Nevertheless, tardigrades appear to be vulnerable to high temperatures and thus the potential effects of global warming. Here, we provide the first analysis of transcriptome data obtained from heat stressed specimens of the eutardigrade Ramazzottius varieornatus, with the aim of providing new insights into the molecular processes affected by high temperatures. Specifically, we compare RNA-seq datasets obtained from active, heat-exposed (35 °C) tardigrades to that of active controls kept at 5 °C. Our data reveal a surprising shift in transcription, involving 9634 differentially expressed transcripts, corresponding to >35% of the transcriptome. The latter data are in striking contrast to the hitherto observed constitutive expression underlying tardigrade extreme stress tolerance and entrance into the latent state of life, known as cryptobiosis. Thus, when examining the molecular response, heat-stress appears to be more stressful for R. varieornatus than extreme conditions, such as desiccation or freezing. A gene ontology analysis reveals that the heat stress response involves a change in transcription and presumably translation, including an adjustment of metabolism, and, putatively, preparation for encystment and subsequent diapause. Among the differentially expressed transcripts we find heat-shock proteins as well as the eutardigrade specific proteins (CAHS, SAHS, MAHS, RvLEAM, and Dsup). The latter proteins thus seem to contribute to a general stress response, and may not be directly related to cryptobiosis.


Assuntos
Tardígrados , Transcriptoma , Animais , Proteínas de Choque Térmico/genética , Resposta ao Choque Térmico/genética , RNA-Seq , Tardígrados/genética
5.
PLoS One ; 16(5): e0250403, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33951070

RESUMO

Loricifera is a phylum of microscopic animals that inhabit marine environments worldwide. Named after their conspicuous and protective lorica, the phylum was first described from Roscoff (France) in 1983 and, hitherto, it contains only 40 species. Based on data collected from Roscoff during the past four decades, we here describe two new species of Nanaloricus, namely Nanaloricus valdemari sp. nov. and Nanaloricus mathildeae sp. nov., as well as a new genus and species, Scutiloricus hugoi gen. et sp. nov. Adults of N. valdemari sp. nov. are distinguished by a pair of unique cuticular ridges, here referred to as longitudinal stripes, spanning laterally along the anterior two thirds of the dorsal lorical plate. N. mathildeae sp. nov. is characterized by strong sexual dimorphism. Specifically, the branches composing the multiform male clavoscalids are much broader as compared to other Nanaloricus species. The two new Nanaloricus species are both characterized by unique sensory organs associated with the double trichoscalids. The size and exact position of these organs differ between the two species. Adults of Scutiloricus hugoi gen. et sp. nov. are characterized by, among other features, a square lorica composed of six cuticular plates with a total of 14 anterior spikes, of which 12 have transverse cuticular ridges and thus appear fenestrated; laterodorsal flosculi arranged linearly; a posterior lorical region characterized by an anal field with a small anal cone flanked by a pair of spurs. Notably, mature females are characterized by a pair of seminal receptacles, a character not previously reported in Loricifera. We discuss the new findings and compare N. valdemari sp. nov. and N. mathildeae sp.nov. with other species assigned to genus Nanaloricus. The distinguishing features of Scutiloricus hugoi gen. et sp. nov. are discussed from a comparative perspective with the other genera of family Nanaloricidae.


Assuntos
Distribuição Animal , Animais , Tamanho Corporal , Feminino , França , Masculino
6.
Artigo em Inglês | MEDLINE | ID: mdl-33373690

RESUMO

Life is set within a narrow frame of physicochemical factors, yet, some species have adapted to conditions far beyond these constraints. Nature appears to have evolved two principal strategies for living organisms to cope with hostile conditions. One way is to remain active, retaining metabolism through adaptations that enable the organism to match the physiological requirements of environmental change. The other is to enter a state of dormancy with metabolic suppression. One form of metabolic suppression, known as cryptobiosis, is a widespread state across life kingdoms, in which metabolism comes to a reversible standstill. Among animals, nematodes, rotifers and tardigrades, comprise species that have the ability to enter cryptobiosis at all stages of their life cycle. Tardigrades are microscopic cosmopolitan metazoans found in permanent and temporal aquatic environments. They are renowned for their ability to tolerate extreme stress and are particularly resistant after having entered a cryptobiotic state known as a "tun". As new molecular tools allow for a more detailed investigation into their enigmatic adaptations, tardigrades are gaining increasing attention. In this graphical review, we provide an outline of survival strategies found among tardigrades and we summarize current knowledge of the adaptive mechanisms that underlie their unique tolerance to extreme or changing environments.


Assuntos
Adaptação Fisiológica , Estresse Fisiológico , Tardígrados/fisiologia , Animais , Evolução Biológica , Diapausa , Meio Ambiente , Estágios do Ciclo de Vida , Modelos Biológicos
7.
Commun Integr Biol ; 13(1): 140-146, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-33014266

RESUMO

The recent discovery of an upper limit in the tolerance of an extremotolerant tardigrade to high temperatures is astounding. Although these microinvertebrates are able to endure severe environmental conditions, including desiccation, freezing and high levels of radiation, high temperatures seem to be an Achilles' heel for active tardigrades. Moreover, exposure-time appears to be a limiting factor for the heat stress tolerance of the otherwise highly resilient desiccated (anhydrobiotic) tardigrades. Indeed, the survival rate of desiccated tardigrades exposed to high temperatures for 24 hours is significantly lower than for exposures of only 1 hour. Here, we investigate the effect of 1 week of high temperature exposures on desiccated tardigrades with the aim of elucidating whether exposure-times longer than 24 hours decrease survival even further. From our analyses we estimate a significant decrease in the 50% mortality temperature from 63ºC to 56ºC for Ramazzottius varieornatus exposed to high temperatures in the desiccated tun state for 24 hours and 1 week, respectively. This negative correlation between exposure-time and tolerance to high temperatures probably results from the interference of intracellular temperature with the homeostasis of macromolecules. We hypothesize that high temperatures denature molecules that play a vital role in sustaining and protecting the anhydrobiotic state.

8.
Sci Rep ; 10(1): 94, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31919388

RESUMO

Global warming is already having harmful effects on habitats worldwide and it is therefore important to gain an understanding of how rising temperatures may affect extant animals. Here, we investigate the tolerance to high temperatures of Ramazzottius varieornatus, a tardigrade frequently found in transient freshwater habitats. Using logistic modelling on activity we evaluate the effect of 24 hour temperature exposures on active tardigrades, with or without a short acclimation period, compared to exposures of desiccated tardigrades. We estimate that the 50% mortality temperature for non-acclimated active tardigrades is 37.1 °C, with a small but significant increase to 37.6 °C following acclimation. Desiccated specimens tolerate much higher temperatures, with an estimated 50% mortality temperature of 82.7 °C following 1 hour exposures, but with a significant decrease to 63.1 °C following 24 hour exposures. Our results show that metabolically active tardigrades are vulnerable to high temperatures, yet acclimatization could provide a tolerance increase. Desiccated specimens show a much higher resilience-exposure-time is, however, a limiting factor giving tardigrades a restricted window of high temperature tolerance. Tardigrades are renowned for their ability to tolerate extreme conditions, but their endurance towards high temperatures clearly has an upper limit-high temperatures thus seem to be their Achilles heel.


Assuntos
Aclimatação , Desidratação , Ecossistema , Temperatura Alta , Tardígrados/fisiologia , Termotolerância , Animais , Água Doce
9.
BMC Evol Biol ; 19(1): 206, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31694520

RESUMO

BACKGROUND: Tardigrada is a group of microscopic invertebrates distributed worldwide in permanent and temporal aquatic habitats. Famous for their extreme stress tolerance, tardigrades are also of interest due to their close relationship with Arthropoda and Cycloneuralia. Despite recent efforts in analyzing the musculature of a number of tardigrade species, data on the class Heterotardigrada remain scarce. Aiming to expand the current morphological framework, and to promote the use of muscular body plans in elucidating tardigrade phylogeny, the myoanatomy of two heterotardigrades, Actinarctus doryphorus and Echiniscoides sigismundi, was analyzed by cytochemistry, scanning electron and confocal laser scanning microscopy and 3D imaging. We discuss our findings with reference to other tardigrades and internal phylogenetic relationships of the phylum. RESULTS: We focus our analyses on the somatic musculature, which in tardigrades includes muscle groups spanning dorsal, ventral, and lateral body regions, with the legs being musculated by fibers belonging to all three groups. A pronounced reduction of the trunk musculature is seen in the dorsoventrally compressed A. doryphorus, a species that generally has fewer cuticle attachment sites as compared to E. sigismundi and members of the class Eutardigrada. Interestingly, F-actin positive signals were found in the head appendages of A. doryphorus. Our analyses further indicate that cross-striation is a feature common to the somatic muscles of heterotardigrades and that E. sigismundi-as previously proposed for other echiniscoidean heterotardigrades-has relatively thick somatic muscle fibers. CONCLUSIONS: We provide new insights into the myoanatomical differences that characterize distinct evolutionary lineages within Tardigrada, highlighting characters that potentially can be informative in future phylogenetic analyses. We focus our current analyses on the ventral trunk musculature. Our observations suggest that seven paired ventromedian attachment sites anchoring a large number of muscles can be regarded as part of the ground pattern of Tardigrada and that fusion and reduction of cuticular attachment sites is a derived condition. Specifically, the pattern of these sites differs in particular details between tardigrade taxa. In the future, a deeper understanding of the tardigrade myoanatomical ground pattern will require more investigations in order to include all major tardigrade lineages.


Assuntos
Tardígrados/classificação , Tardígrados/genética , Animais , Evolução Biológica , Microscopia Confocal , Filogenia , Tardígrados/anatomia & histologia , Tardígrados/ultraestrutura
10.
BMC Biol ; 14: 43, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27267928

RESUMO

The demonstration of the existence of metazoan life in absence of free oxygen is one of the most fascinating and difficult challenges in biology. Danovaro et al. (2010) discovered three new species of the Phylum Loricifera, living in the anoxic sediments of the L'Atalante, a deep-hypersaline anoxic basin of the Mediterranean Sea. Multiple and independent analyses based on staining, incorporation of radiolabeled substrates, CellTracker Green incorporation experiments and ultra-structure analyses, allowed Danovaro et al. (2010) to conclude that these animals were able to spend their entire life cycle under anoxic conditions. Bernhard et al. (2015) investigated the same basin. Due to technical difficulties in sampling operations, they could not collect samples from the permanently anoxic sediment, and sampled only the redoxcline portion of the L'Atalante basin. They found ten individuals of Loricifera and provided alternative interpretations of the results of Danovaro et al. (2010). Here we analyze these interpretations, and present additional evidence indicating that the Loricifera encountered in the anoxic basin L'Atalante were actually alive at the time of sampling. We also discuss the reliability of different methodologies and approaches in providing evidence of metazoans living in anoxic conditions, paving the way for future investigations.This paper is a response to Bernhard JM, Morrison CR, Pape E, Beaudoin DJ, Todaro MA, Pachiadaki MG, Kormas KAr, Edgcomb VG. 2015. Metazoans of redoxcline sediments in Mediterranean deep-sea hypersaline anoxic basins. BMC Biology 2015 13:105.See research article at http://bmcbiol.biomedcentral.com/articles/10.1186/s12915-015-0213-6.


Assuntos
Sedimentos Geológicos , Anaerobiose , Animais , Mar Mediterrâneo , Metabolismo , Especificidade da Espécie , Coloração e Rotulagem
11.
PLoS One ; 10(4): e0122364, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25875482

RESUMO

Cycliophorans have a complex life cycle that involves several sexual and asexual stages. One of the sexual stages is the 40 µm-long dwarf male, which is among the smallest free-living metazoans. Although the dwarf male has a highly complex body plan, this minute organism is composed of a very low number of somatic cells (~50). The developmental processes that give rise to this unique phenotype are largely unknown. Here we use high resolution serial block face-scanning electron microscopy to analyze the anatomy and morphogenesis of three cycliophoran dwarf males at different developmental stages ranging from internal bud to mature male. The anatomical and morphological features of the mature dwarf male stage reported here largely correspond to those reported in earlier studies. Interestingly, the organs that typically characterize the anatomy of the mature dwarf male, e.g., muscles, brain, testis and glands, are already formed in the young male. However, there are striking differences between the mature male and young male stages at the level of cellular architecture. Thus, while the young male stage, like the internal bud stage, possesses approximately 200 nucleated cells, the mature male stage comprises only around 50 nucleated cells; muscle and epidermal cells of the mature male lack nuclei. Moreover, the total body volume of the mature male is only 63% of the body of the young male implying that the maturation of the young male into a mature male involves a marked reduction of internal body volume, mainly by massive nuclei loss. Our comparative analysis of these dwarf male specimens reveals unprecedented insight into the striking morphological and developmental differences that characterize these highly miniaturized male stages both at the level of body organization and at the level of cellular ultrastructure.


Assuntos
Encéfalo/ultraestrutura , Estágios do Ciclo de Vida , Microscopia Eletrônica/métodos , Testículo/ultraestrutura , Animais , Encéfalo/crescimento & desenvolvimento , Imageamento Tridimensional , Larva/crescimento & desenvolvimento , Larva/ultraestrutura , Masculino , Microscopia Eletrônica de Varredura , Morfogênese , Testículo/crescimento & desenvolvimento , Gravação em Vídeo
12.
J Morphol ; 273(8): 850-69, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22505145

RESUMO

Knowledge on the morphology of the cycliophoran female has mostly been based on observations of immature females in brood chambers of feeding stages. With the use of light- and transmission electron microscopy, the morphology and ultrastructure of the free and fully mature female of Cycliophora is described now for the first time. The external morphology is characterized by a ciliation consisting of an anteroventral ciliated field, a posterior ciliated tuft, and four sensory structures extending anteriorly from the anteroventral ciliated field. In addition, a small ciliated structure in the midventral region is interpreted as a round-shaped gonopore. Internally, a bilateral cerebral ganglion is situated in the anterior region and a large oocyte is located medially in the body. Several glands are present anteriorly, while posteriorly a pair of glands is associated with the ciliated tuft. Dorsal and ventral longitudinal muscles, as well as, dorsoventral muscles are identified by electron microscopy. Muscle fibers attach to the endocuticle via the epidermis, by means of attachment fibers. An unknown endosymbiont is present throughout the body of the female. We discuss the functional implications of the morphological and ultrastructural aspects of the cycliophoran female. Finally, we compare this life cycle stage with that fromother phyla, suggested as phylogenetically close.


Assuntos
Invertebrados/anatomia & histologia , Estágios do Ciclo de Vida , Animais , Feminino , Invertebrados/ultraestrutura , Microscopia Eletrônica de Transmissão , Músculos/anatomia & histologia , Músculos/fisiologia , Músculos/ultraestrutura , Sistema Nervoso/anatomia & histologia , Sistema Nervoso/ultraestrutura , Filogenia
13.
Biol Bull ; 217(1): 2-5, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19679718

RESUMO

Complexity of metazoan bodyplans is commonly assumed to be correlated to the absolute number of cells and the number of cell types present in a species (1). Sexually mature individuals of the smallest free-living animals have a minimum of several hundred somatic cells, and only secondarily simplified parasitic or commensal species range below this threshold. Males of the two hitherto described representatives of the phylum Cycliophora (2), with a body length of about 40 microm, are among the smallest existing free-living metazoans, yet they exhibit an amazingly complex bodyplan. Herein, we show that only a few dozen cells account for this complexity. We conclude therefore that metazoan complexity is not obligatorily correlated with body size or with the overall cell number of an individual. Accordingly, the earliest multicellular animals on Earth, which most probably were small individuals, may have had more complex bodyplans than commonly assumed.


Assuntos
Invertebrados/ultraestrutura , Animais , Contagem de Células , Masculino , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão
14.
J Morphol ; 270(3): 257-70, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18937332

RESUMO

Cycliophora is a very recently described phylum of acoelomate metazoans with a complex life cycle and a phylogenetic position that has been under debate ever since its discovery in 1995. Symbion americanus, which lives attached to the mouthparts of the American lobster, Homarus americanus, represents the second species described for the phylum. Aiming to increase the morphological knowledge about this cryptic clade, the present study describes the muscle arrangement of the feeding stage, the attached Prometheus larva with the dwarf male inside, the free living male, the Pandora larva, and the chordoid larva of S. americanus using actin staining and confocal laser scanning microscopy. 3D reconstructions of the muscular systems are presented. In the feeding stage, circular muscles compose the buccal funnel aperture. In addition, a pair of muscles runs longitudinally in the buccal funnel. A complex sphincter was found just proximally to the anus, and six longitudinal muscles run from the trunk constriction ("neck") in basal direction. The musculature of the larval stages and the dwarf male is very complex and includes longitudinal muscles that run dorsally and ventrally. In addition, we found dorso-ventral muscles. The male has a complex posterior muscle apparatus in the vicinity of the penis. In this stage, X- and V-shaped structures were identified on the dorsal and the ventral side, respectively. Pandora and chordoid larvae possess additional circular muscles. We discuss our findings with respect to muscle elements of other metazoan groups and the chordoid larva of Symbion pandora.


Assuntos
Estágios do Ciclo de Vida , Músculos/anatomia & histologia , Músculos/fisiologia , Animais , Imageamento Tridimensional , Larva/anatomia & histologia , Larva/fisiologia , Microscopia Confocal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA