Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 25(54): 7117-30, 2006 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-16751808

RESUMO

Oncogenic Ras interferes with adhesive functions of epithelial cells, but requires tumor growth factor beta (TGFbeta) signaling to cause epithelial-mesenchymal transition (EMT) and tumor progression in model systems. To investigate the mechanisms by which Ras and TGFbeta pathways cooperate in EMT induction, we introduced a tamoxifen-inducible version of Raf-1 (RafER) into fully polarized, mammary epithelial cells (EpH4). EMT characterized by loss of E-cadherin expression and upregulation of invasiveness-promoting genes was induced by TGFbeta plus 4-hydroxytamoxifen (4HT) activation of RafER. Downregulation of E-cadherin by RafER plus TGFbeta was detectable in total cell lysates after 48 h and much earlier in detergent-insoluble fractions of E-cadherin. Both pathways cooperated to strongly enhance endocytosis of E-cadherin, mainly via the clathrin-dependent route. Pulse-chase experiments showed decreased E-cadherin protein stability in cells stimulated with TGFbeta and 4HT and increased E-cadherin half-life in the presence of monensin. Monensin and chloroquine prevented E-cadherin degradation to different extent, but only monensin effectively blocked the loss of E-cadherin from the junctional complexes. Both lysosome inhibitors caused accumulation of E-cadherin vesicles, some of which were positive for Cathepsin D and lysosome-associated membrane protein 1 (LAMP-1). In addition, TGFbeta and mitogen-activated protein kinase hyperactivation synergistically induced E-cadherin ubiquitination, suggesting that the cooperation of Raf and TGFbeta favors lysosomal degradation of E-cadherin instead of its recycling. Our data indicate that early stages of EMT involve cooperative, post-translational downregulation of E-cadherin, whereas loss of E-cadherin via transcriptional repression is a late event in EMT.


Assuntos
Caderinas/metabolismo , Transformação Celular Neoplásica , Células Epiteliais/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Quinases raf/metabolismo , Animais , Northern Blotting , Western Blotting , Linhagem Celular Tumoral , Regulação para Baixo , Endocitose , Células Epiteliais/patologia , Imunofluorescência , Imunoprecipitação , Lisossomos/metabolismo , Camundongos , Microscopia Confocal , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes de Fusão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA