Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(3): 031302, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35905348

RESUMO

A possible implication of an ultralight dark matter field interacting with the standard model degrees of freedom is oscillations of fundamental constants. Here, we establish direct experimental bounds on the coupling of an oscillating ultralight dark matter field to the up, down, and strange quarks and to the gluons, for oscillation frequencies between 10 and 10^{8} Hz. We employ spectroscopic experiments that take advantage of the dependence of molecular transition frequencies on the nuclear masses. Our results apply to previously unexplored frequency bands and improve on existing bounds at frequencies >5 MHz. We also improve on the bounds for coupling to the electromagnetic field and the electron field, in particular spectral windows. We identify a sector of ultralight dark matter and standard model coupling space where the bounds from equivalence principle tests may be challenged by next-generation experiments of the present kind.

2.
Phys Rev Lett ; 117(27): 271102, 2016 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-28084778

RESUMO

In order to investigate the long-term dimensional stability of matter, we have operated an optical resonator fabricated from crystalline silicon at 1.5 K continuously for over one year and repeatedly compared its resonance frequency f_{res} with the frequency of a GPS-monitored hydrogen maser. After allowing for an initial settling time, over a 163-day interval we found a mean fractional drift magnitude |f_{res}^{-1}df_{res}/dt|<1.4×10^{-20}/s. The resonator frequency is determined by the physical length and the speed of light and we measure it with respect to the atomic unit of time. Thus the bound rules out, to first order, a hypothetical differential effect of the Universe's expansion on rulers and atomic clocks. We also constrain a hypothetical violation of the principle of local position invariance for resonator-based clocks and derive bounds for the strength of space-time fluctuations.

3.
Opt Lett ; 38(22): 4903-6, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24322162

RESUMO

We have demonstrated a compact, robust device for simultaneous absolute frequency stabilization of three diode lasers whose carrier frequencies can be chosen freely relative to the reference. A rigid ULE multicavity block is employed, and, for each laser, the sideband locking technique is applied. A small lock error, computer control of frequency offset, wide range of frequency offset, simple construction, and robust operation are the useful features of the system. One concrete application is as a stabilization unit for the cooling and trapping lasers of a neutral-atom lattice clock. The device significantly supports and improves the clock's operation. The laser with the most stringent requirements imposed by this application is stabilized to a line width of 70 Hz, and a residual frequency drift less than 0.5 Hz/s. The carrier optical frequency can be tuned over 350 MHz while in lock.


Assuntos
Artefatos , Lasers , Análise Espectral/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Retroalimentação
4.
Phys Rev Lett ; 103(9): 090401, 2009 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-19792767

RESUMO

We report on the results of a strongly improved test of local Lorentz invariance, consisting of a search for an anisotropy of the resonance frequencies of electromagnetic cavities. The apparatus comprises two orthogonal standing-wave optical cavities interrogated by a laser, which were rotated approximately 175 000 times over the duration of 13 months. The measurements are interpreted as a search for an anisotropy of the speed of light, within the Robertson-Mansouri-Sexl (RMS) and the standard model extension (SME) photon sector test theories. We find no evidence for an isotropy violation at a 1sigma uncertainty level of 0.6 parts in 10(17) (RMS) and 2 parts in 10(17) for seven of eight coefficients of the SME.

5.
Opt Lett ; 25(23): 1729-31, 2000 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18066328

RESUMO

The absolute frequency of the In(+) 5s(2) (1)S(0)5s5p (3)P(0) clock transition at 237 nm was measured with an accuracy of 1.8 parts in 10(13). Using a phase-coherent frequency chain, we compared the (1)S(0)(3)P(0) transition with a methane-stabilized HeNe laser at 3.39 microm, which was calibrated against an atomic cesium fountain clock. A frequency gap of 37 THz at the fourth harmonic of the HeNe standard was bridged by a frequency comb generated by a mode-locked femtosecond laser. The frequency of the In(+) clock transition was found to be 1,267,402,452,899.92 (0.23) kHz, the accuracy being limited by the uncertainty of the HeNe laser reference. This result represents an improvement in accuracy of more than 2 orders of magnitude over previous measurements of the line and now stands as what is to our knowledge the most accurate measurement of an optical transition in a single ion.s.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA