RESUMO
Structural neuroimaging data have been used to compute an estimate of the biological age of the brain (brain-age) which has been associated with other biologically and behaviorally meaningful measures of brain development and aging. The ongoing research interest in brain-age has highlighted the need for robust and publicly available brain-age models pre-trained on data from large samples of healthy individuals. To address this need we have previously released a developmental brain-age model. Here we expand this work to develop, empirically validate, and disseminate a pre-trained brain-age model to cover most of the human lifespan. To achieve this, we selected the best-performing model after systematically examining the impact of seven site harmonization strategies, age range, and sample size on brain-age prediction in a discovery sample of brain morphometric measures from 35,683 healthy individuals (age range: 5-90 years; 53.59% female). The pre-trained models were tested for cross-dataset generalizability in an independent sample comprising 2101 healthy individuals (age range: 8-80 years; 55.35% female) and for longitudinal consistency in a further sample comprising 377 healthy individuals (age range: 9-25 years; 49.87% female). This empirical examination yielded the following findings: (1) the accuracy of age prediction from morphometry data was higher when no site harmonization was applied; (2) dividing the discovery sample into two age-bins (5-40 and 40-90 years) provided a better balance between model accuracy and explained age variance than other alternatives; (3) model accuracy for brain-age prediction plateaued at a sample size exceeding 1600 participants. These findings have been incorporated into CentileBrain (https://centilebrain.org/#/brainAGE2), an open-science, web-based platform for individualized neuroimaging metrics.
Assuntos
Envelhecimento , Encéfalo , Imageamento por Ressonância Magnética , Humanos , Adolescente , Feminino , Idoso , Adulto , Criança , Adulto Jovem , Masculino , Encéfalo/diagnóstico por imagem , Encéfalo/anatomia & histologia , Encéfalo/crescimento & desenvolvimento , Idoso de 80 Anos ou mais , Pré-Escolar , Pessoa de Meia-Idade , Envelhecimento/fisiologia , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Neuroimagem/normas , Tamanho da AmostraRESUMO
The value of normative models in research and clinical practice relies on their robustness and a systematic comparison of different modelling algorithms and parameters; however, this has not been done to date. We aimed to identify the optimal approach for normative modelling of brain morphometric data through systematic empirical benchmarking, by quantifying the accuracy of different algorithms and identifying parameters that optimised model performance. We developed this framework with regional morphometric data from 37â407 healthy individuals (53% female and 47% male; aged 3-90 years) from 87 datasets from Europe, Australia, the USA, South Africa, and east Asia following a comparative evaluation of eight algorithms and multiple covariate combinations pertaining to image acquisition and quality, parcellation software versions, global neuroimaging measures, and longitudinal stability. The multivariate fractional polynomial regression (MFPR) emerged as the preferred algorithm, optimised with non-linear polynomials for age and linear effects of global measures as covariates. The MFPR models showed excellent accuracy across the lifespan and within distinct age-bins and longitudinal stability over a 2-year period. The performance of all MFPR models plateaued at sample sizes exceeding 3000 study participants. This model can inform about the biological and behavioural implications of deviations from typical age-related neuroanatomical changes and support future study designs. The model and scripts described here are freely available through CentileBrain.
Assuntos
Benchmarking , Longevidade , Humanos , Masculino , Feminino , Encéfalo/diagnóstico por imagem , Modelos Estatísticos , AlgoritmosRESUMO
We present an empirically benchmarked framework for sex-specific normative modeling of brain morphometry that can inform about the biological and behavioral significance of deviations from typical age-related neuroanatomical changes and support future study designs. This framework was developed using regional morphometric data from 37,407 healthy individuals (53% female; aged 3-90 years) following a comparative evaluation of eight algorithms and multiple covariate combinations pertaining to image acquisition and quality, parcellation software versions, global neuroimaging measures, and longitudinal stability. The Multivariate Factorial Polynomial Regression (MFPR) emerged as the preferred algorithm optimized using nonlinear polynomials for age and linear effects of global measures as covariates. The MFPR models showed excellent accuracy across the lifespan and within distinct age-bins, and longitudinal stability over a 2-year period. The performance of all MFPR models plateaued at sample sizes exceeding 3,000 study participants. The model and scripts described here are freely available through CentileBrain (https://centilebrain.org/).
RESUMO
BACKGROUND: The COVID-19 pandemic has been associated with increased levels of depression and anxiety with implications for the use of antidepressant medications. METHODS: The incident rate of antidepressant fills before and during the COVID-19 pandemic were compared using interrupted time-series analysis followed by comprehensive sensitivity analyses on data derived from electronic medical records from a large health management organization providing nationwide services to 14% of the Israeli population. The dataset covered the period from 1 January 2013 to 1 February 2021, with 1 March 2020 onwards defined as the period of the COVID-19 pandemic. Forecasting analysis was implemented to test the effect of the vaccine roll-out and easing of social restrictions on antidepressant use. RESULTS: The sample consisted of 852 233 persons with a total antidepressant incident fill count of 139 535.4 (total cumulative rate per 100 000 = 16 372.91, 95% CI 16 287.19-16 459.01). We calculated the proportion of antidepressant prescription fills for the COVID-19 period, and the counterfactual proportion for the same period, assuming COVID-19 had not occurred. The difference in these proportions was significant [Cohen's h = 10-3 (0.16), 95% CI 10-3 ( - 0.71 to 1.03)]. The pandemic was associated with a significant increase in the slope of the incident rate of antidepressant fills (slope change = 0.01, 95% CI 0.00-0.03; p = 0.04) and a monthly increase of 2% compared to the counterfactual (the estimated rate assuming no pandemic occurred). The increased rate was more pronounced in women, and was not modified by lockdown on/off periods, socioeconomic or SARS-CoV-2 status. The rate of observed antidepressant fills was similar to that forecasted under the assumption of ongoing COVID-19 distress. CONCLUSION: These findings underscore the toll of the pandemic on mental health and inform mental health policy and service delivery during and after implementing COVID-19 attenuation strategies.