RESUMO
Cervical lymphatic vessels (cLVs) have been shown to drain solutes and cerebrospinal fluid (CSF) from the brain. However, their hydrodynamical properties have never been evaluated in vivo. Here, we developed two-photon optical imaging with particle tracking in vivo of CSF tracers (2P-OPTIC) in superficial and deep cLVs of mice, characterizing their flow and showing that the major driver is intrinsic pumping by contraction of the lymphatic vessel wall. Moreover, contraction frequency and flow velocity were reduced in aged mice, which coincided with a reduction in smooth muscle actin expression. Slowed flow in aged mice was rescued using topical application of prostaglandin F2α, a prostanoid that increases smooth muscle contractility, which restored lymphatic function in aged mice and enhanced central nervous system clearance. We show that cLVs are important regulators of CSF drainage and that restoring their function is an effective therapy for improving clearance in aging.
Assuntos
Envelhecimento , Líquido Cefalorraquidiano , Vasos Linfáticos , Animais , Vasos Linfáticos/fisiologia , Vasos Linfáticos/metabolismo , Líquido Cefalorraquidiano/metabolismo , Líquido Cefalorraquidiano/fisiologia , Envelhecimento/fisiologia , CamundongosRESUMO
Glymphatic transport is vital for the physiological homeostasis of the retina and optic nerve. Pathological alterations of ocular glymphatic fluid transport and enlarged perivascular spaces have been described in glaucomatous mice. It remains to be established how diabetic retinopathy, which impairs vision in about 50% of diabetes patients, impacts ocular glymphatic fluid transport. Here, we examined ocular glymphatic transport in chronic hyperglycemic diabetic mice as well as in healthy mice experiencing a daily transient increase in blood glucose. Mice suffering from severe diabetes for two and four months, induced by streptozotocin, exhibited no alterations in ocular glymphatic fluid transport in the optic nerve compared to age-matched, non-diabetic controls. In contrast, transient increases in blood glucose induced by repeated daily glucose injections in healthy, awake, non-diabetic mice accelerated antero- and retrograde ocular glymphatic transport. Structural analysis showed enlarged perivascular spaces in the optic nerves of glucose-treated mice, which were absent in diabetic mice. Thus, transient repeated hyperglycemic events, but not constant hyperglycemia, ultimately enlarge perivascular spaces in the murine optic nerve. These findings indicate that fluid transport in the mouse eye is vulnerable to fluctuating glycemic levels rather than constant hyperglycemia, suggesting that poor glycemic control drives glymphatic malfunction and perivascular enlargement in the optic nerve.
Assuntos
Diabetes Mellitus Experimental , Hiperglicemia , Camundongos , Humanos , Animais , Glicemia , Transporte BiológicoRESUMO
The glymphatic system transports cerebrospinal fluid (CSF) into the brain via arterial perivascular spaces and removes interstitial fluid from the brain along perivenous spaces and white matter tracts. This directional fluid flow supports the clearance of metabolic wastes produced by the brain. Glymphatic fluid transport is facilitated by aquaporin-4 (AQP4) water channels, which are enriched in the astrocytic vascular endfeet comprising the outer boundary of the perivascular space. Yet, prior studies of AQP4 function have relied on genetic models, or correlated altered AQP4 expression with glymphatic flow in disease states. Herein, we sought to pharmacologically manipulate AQP4 function with the inhibitor AER-271 to assess the contribution of AQP4 to glymphatic fluid transport in mouse brain. Administration of AER-271 inhibited glymphatic influx as measured by CSF tracer infused into the cisterna magna and inhibited increases in the interstitial fluid volume as measured by diffusion-weighted MRI. Furthermore, AER-271 inhibited glymphatic efflux as assessed by an in vivo clearance assay. Importantly, AER-271 did not affect AQP4 localization to the astrocytic endfeet, nor have any effect in AQP4 deficient mice. Since acute pharmacological inhibition of AQP4 directly decreased glymphatic flow in wild-type but not in AQP4 deficient mice, we foresee AER-271 as a new tool for manipulation of the glymphatic system in rodent brain.
Assuntos
Clorofenóis , Sistema Glinfático , Camundongos , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Sistema Glinfático/metabolismo , Clorofenóis/metabolismo , Aquaporina 4/genética , Aquaporina 4/metabolismoRESUMO
This study evaluated suvecaltamide, a selective T-type calcium channel modulator, on chemotherapy-induced peripheral neurotoxicity (CIPN) and anti-cancer activity associated with bortezomib (BTZ). Rats received BTZ (0.2 mg/kg thrice weekly) for 4 weeks, then BTZ alone (n = 8) or BTZ+suvecaltamide (3, 10, or 30 mg/kg once daily; each n = 12) for 4 weeks. Nerve conduction velocity (NCV), mechanical threshold, ß-tubulin polymerization, and intraepidermal nerve fiber (IENF) density were assessed. Proteasome inhibition was evaluated in peripheral blood mononuclear cells. Cytotoxicity was assessed in human multiple myeloma cell lines (MCLs) exposed to BTZ alone (IC50 concentration), BTZ+suvecaltamide (10, 30, 100, 300, or 1000 nM), suvecaltamide alone, or vehicle. Tumor volume was estimated in athymic nude mice bearing MCL xenografts receiving vehicle, BTZ alone (1 mg/kg twice weekly), or BTZ+suvecaltamide (30 mg/kg once daily) for 28 days, or no treatment (each n = 8). After 4 weeks, suvecaltamide 10 or 30 mg/kg reversed BTZ-induced reduction in NCV, and suvecaltamide 30 mg/kg reversed BTZ-induced reduction in IENF density. Proteasome inhibition and cytotoxicity were similar between BTZ alone and BTZ+suvecaltamide. BTZ alone and BTZ+suvecaltamide reduced tumor volume versus the control (day 18), and BTZ+suvecaltamide reduced tumor volume versus BTZ alone (day 28). Suvecaltamide reversed CIPN without affecting BTZ anti-cancer activity in preclinical models.
RESUMO
BACKGROUND: Available essential tremor (ET) therapies have limitations. OBJECTIVES: The objective of this study was to evaluate CX-8998, a selective T-type calcium channel modulator, in essential tremor. METHODS: Patients 18-75 years old with moderate to severe essential tremor were randomized 1:1 to receive CX-8998 (titrated to 10 mg twice daily) or placebo. The primary end point was change from baseline to day 28 in The Essential Tremor Rating Assessment Scale performance subscale scored by independent blinded video raters. Secondary outcomes included in-person blinded investigator rating of The Essential Tremor Rating Assessment Scale performance subscale, The Essential Tremor Rating Assessment Scale activities of daily living subscale, and Kinesia ONE accelerometry. RESULTS: The video-rated The Essential Tremor Rating Assessment Scale performance subscale was not different for CX-8998 (n = 39) versus placebo (n = 44; P = 0.696). CX-8998 improved investigator-rated The Essential Tremor Rating Assessment Scale performance subscale (P = 0.017) and The Essential Tremor Rating Assessment Scale activities of daily living (P = 0.049) but not Kinesia ONE (P = 0.421). Adverse events with CX-8998 included dizziness (21%), headache (8%), euphoric mood (6%), and insomnia (6%). CONCLUSIONS: The primary efficacy end point was not met; however, CX-8998 improved some assessments of essential tremor, supporting further clinical investigation. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Assuntos
Tremor Essencial , Atividades Cotidianas , Método Duplo-Cego , Tremor Essencial/tratamento farmacológico , Humanos , Resultado do TratamentoRESUMO
Background: Essential tremor (ET) is a common, progressive neurological syndrome with bilateral upper-limb dysfunction of at least 3-year duration, with or without tremor in other body locations. This disorder has a negative impact on daily function and quality of life. A single oral therapy has been approved by FDA for ET. Off-label pharmacotherapies have inadequate efficacy and poor tolerability with high rates of patient dissatisfaction and discontinuation. Safe and efficacious pharmacotherapies are urgently needed to decrease tremor and improve daily living. T-CALM (Tremor-CAv3 modulation) protocol is designed to assess safety and efficacy of CX-8998, a selective modulator of the T-type calcium channel, for ET therapy. Methods/Design: T-CALM is a phase 2, proof of concept, randomized, double-blind, placebo-controlled trial. Titrated doses of CX-8998 to 10 mg BID or placebo will be administered for 28 days to moderate to severe ET patients who are inadequately treated with existing therapies. The primary endpoint will be change from baseline to day 28 of The Essential Tremor Rating Assessment Performance Subscale (TETRAS-PS). Secondary efficacy endpoints for clinician and patient perception of daily function will include TETRAS Activity of Daily Living (ADL), Quality of Life in Essential Tremor Questionnaire (QUEST), Clinical Global Impression-Improvement (CGI-I), Patient Global Impression of Change (PGIC), and Goal Attainment Scale (GAS). Kinesia One, Kinesia 360, and iMotor will biometrically evaluate motor function and tremor amplitude. Safety will be assessed by adverse events, physical and neurological exams and laboratory tests. Sample size of 43 patients per group is estimated to have 90% power to detect a 5.5-point difference between CX-8998 and placebo for TETRAS-PS. Efficacy analyses will be performed with covariance (ANCOVA) and 2-sided test at 0.05 significance level. Discussion: T-CALM has a unique design with physician rating scales, patient-focused questionnaires and scales and objective motor measurements to assess clinically meaningful and congruent efficacy. Patient perception of ET debilitation and therapy with CX-8998 will be key findings. Overall goal of T-CALM is generation of safety and efficacy data to support a go, no-go decision to further develop CX-8998 for ET. Design of T-CALM may guide future clinical studies of ET pharmacotherapies. Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT03101241.