Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5918, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37739935

RESUMO

The longstanding model is that most bloodstream infections (BSIs) are caused by a single organism. We perform whole genome sequencing of five-to-ten strains from blood culture (BC) bottles in each of ten patients with Candida glabrata BSI. We demonstrate that BCs contain mixed populations of clonal but genetically diverse strains. Genetically distinct strains from two patients exhibit phenotypes that are potentially important during BSIs, including differences in susceptibility to antifungal agents and phagocytosis. In both patients, the clinical microbiology lab recovered a fluconazole-susceptible index strain, but we identify mixed fluconazole-susceptible and -resistant populations. Diversity in drug susceptibility is likely clinically relevant, as fluconazole-resistant strains were subsequently recovered by the clinical laboratory during persistent or relapsing infections. In one patient, unrecognized respiration-deficient small colony variants are fluconazole-resistant and significantly attenuated for virulence during murine candidiasis. Our data suggest a population-based model of C. glabrata genotypic and phenotypic diversity during BSIs.


Assuntos
Antifúngicos , Sepse , Humanos , Animais , Camundongos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida glabrata/genética , Fluconazol/farmacologia , Fluconazol/uso terapêutico , Hemocultura , Genótipo
2.
Res Sq ; 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37066226

RESUMO

The longstanding paradigm is that most bloodstream infections (BSIs) are caused by a single organism. We performed whole genome sequencing of five-to-ten strains from blood culture (BC) bottles in each of ten patients with Candida glabrata BSI. We demonstrated that BCs contained mixed populations of clonal but genetically diverse strains. Genetically distinct strains from two patients exhibited phenotypes that were potentially important during BSIs, including differences in susceptibility to antifungal agents and phagocytosis. In both patients, the clinical microbiology lab recovered a fluconazole-susceptible index strain, but we identified mixed fluconazole-susceptible and â€"resistant populations. Diversity in drug susceptibility was likely clinically relevant, as fluconazole-resistant strains were subsequently recovered by the clinical laboratory during persistent or relapsing infections. In one patient, unrecognized respiration-deficient small colony variants were fluconazole-resistant and significantly attenuated for virulence during murine candidiasis. Our data suggest a new population-based paradigm of C. glabrata genotypic and phenotypic diversity during BSIs.

3.
mBio ; 13(6): e0290622, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36445082

RESUMO

It is unknown whether bacterial bloodstream infections (BSIs) are commonly caused by single organisms or mixed microbial populations. We hypothesized that contemporaneous carbapenem-resistant Klebsiella pneumoniae (CRKP) strains from blood cultures of individual patients are genetically and phenotypically distinct. We determined short-read whole-genome sequences of 10 sequence type 258 (ST258) CRKP strains from blood cultures in each of 6 patients (Illumina HiSeq). Strains clustered by patient by core genome and pan-genome phylogeny. In 5 patients, there was within-host strain diversity by gene mutations, presence/absence of antibiotic resistance or virulence genes, and/or plasmid content. Accessory gene phylogeny revealed strain diversity in all 6 patients. Strains from 3 patients underwent long-read sequencing for genome completion (Oxford Nanopore) and phenotypic testing. Genetically distinct strains within individuals exhibited significant differences in carbapenem and other antibiotic responses, capsular polysaccharide (CPS) production, mucoviscosity, and/or serum killing. In 2 patients, strains differed significantly in virulence during mouse BSIs. Genetic or phenotypic diversity was not observed among strains recovered from blood culture bottles seeded with index strains from the 3 patients and incubated in vitro at 37°C. In conclusion, we identified genotypic and phenotypic variant ST258 CRKP strains from blood cultures of individual patients with BSIs, which were not detected by the clinical laboratory or in seeded blood cultures. The data suggest a new paradigm of CRKP population diversity during BSIs, at least in some patients. If validated for BSIs caused by other bacteria, within-host microbial diversity may have implications for medical, microbiology, and infection prevention practices and for understanding antibiotic resistance and pathogenesis. IMPORTANCE The long-standing paradigm for pathogenesis of bacteremia is that, in most cases, a single organism passes through a bottleneck and establishes itself in the bloodstream (single-organism hypothesis). In keeping with this paradigm, standard practice in processing positive microbiologic cultures is to test single bacterial strains from morphologically distinct colonies. This study is the first genome-wide analysis of within-host diversity of Klebsiella pneumoniae strains recovered from individual patients with bloodstream infections (BSIs). Our finding that positive blood cultures comprised genetically and phenotypically heterogeneous carbapenem-resistant K. pneumoniae strains challenges the single-organism hypothesis and suggests that at least some BSIs are caused by mixed bacterial populations that are unrecognized by the clinical laboratory. The data support a model of pathogenesis in which pressures in vivo select for strain variants with particular antibiotic resistance or virulence attributes and raise questions about laboratory protocols and treatment decisions directed against single strains.


Assuntos
Bacteriemia , Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Klebsiella , Sepse , Animais , Camundongos , Klebsiella pneumoniae/genética , Hemocultura , Antibacterianos/uso terapêutico , Carbapenêmicos , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Bacteriemia/microbiologia , Sepse/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Testes de Sensibilidade Microbiana , beta-Lactamases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA