Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(10): 17479-17480, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38858930

RESUMO

This erratum corrects errors that appear in Opt. Express31, 5042 (2023).10.1364/OE.480301.

2.
Opt Express ; 32(11): 19837-19853, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38859109

RESUMO

Systematic errors are observed in dual comb spectroscopy when pulses from the two sources travel in a common fiber before interrogating the sample of interest. When sounding a molecular gas, these errors distort both the line shapes and retrieved concentrations. Simulations of dual comb interferograms based on a generalized nonlinear Schrodinger equation highlight two processes for these systematic errors. Self-phase modulation changes the spectral content of the field interrogating the molecular response but affects the recorded spectral baseline and absorption features differently, leading to line intensity errors. Cross-phase modulation modifies the relative inter-pulse delay, thus introducing interferogram sampling errors and creating a characteristic asymmetric distortion on spectral lines. Simulations capture the shape and amplitude of experimental errors which are around 0.1% on spectral transmittance residuals for 10 mW of total average power in 10 meters of common fiber, scaling up to above 0.6% for 20 mW and 60 m.

3.
Atmos Meas Tech ; 16(17)2023.
Artigo em Inglês | MEDLINE | ID: mdl-37961051

RESUMO

We present an open-path mid-infrared dual-comb spectroscopy (DCS) system capable of precise measurement of the stable water isotopologues H216O and HD16O. This system ran in a remote configuration at a rural test site for 3.75 months with 60% uptime and achieved a precision of < 2‰ on the normalized ratio of H216O and HD16O (δD) in 1000s. Here, we compare the δD values from the DCS system to those from the National Ecological Observatory Network (NEON) isotopologue point sensor network. Over the multi-month campaign, the mean difference between the DCS δD values and the NEON δD values from a similar ecosystem is < 2‰ with a standard deviation of 18‰, which demonstrates the inherent accuracy of DCS measurements over a variety of atmospheric conditions. We observe time-varying diurnal profiles and seasonal trends that are mostly correlated between the sites on daily timescales. This observation motivates the development of denser ecological monitoring networks aimed at understanding regional- and synoptic-scale water transport. Precise and accurate open-path measurements using DCS provide new capabilities for such networks.

4.
Opt Express ; 31(18): 29074-29084, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37710714

RESUMO

Operation of any dual-comb spectrometer requires digitization of the interference signal before further processing. Nonlinearities in the analog-to-digital conversion can alter the apparent gas concentration by multiple percent, limiting both precision and accuracy of this technique. This work describes both the measurement of digitizer nonlinearity and the development of a model that quantitatively describes observed concentration bias over a range of conditions. We present hardware methods to suppress digitizer-induced bias of concentration retrievals below 0.1%.

5.
Front Chem ; 11: 1202255, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332891

RESUMO

We present results from a field study monitoring methane and volatile organic compound emissions near an unconventional oil well development in Northern Colorado from September 2019 to May 2020 using a mid-infrared dual-comb spectrometer. This instrument allowed quantification of methane, ethane, and propane in a single measurement with high time resolution and integrated path sampling. Using ethane and propane as tracer gases for methane from oil and gas activity, we observed emissions during the drilling, hydraulic fracturing, millout, and flowback phases of well development. Large emissions were seen in drilling and millout phases and emissions decreased to background levels during the flowback phase. Ethane/methane and propane/methane ratios varied widely throughout the observations.

6.
Nature ; 618(7966): 721-726, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37344648

RESUMO

The combination of optical time transfer and optical clocks opens up the possibility of large-scale free-space networks that connect both ground-based optical clocks and future space-based optical clocks. Such networks promise better tests of general relativity1-3, dark-matter searches4 and gravitational-wave detection5. The ability to connect optical clocks to a distant satellite could enable space-based very long baseline interferometry6,7, advanced satellite navigation8, clock-based geodesy2,9,10 and thousandfold improvements in intercontinental time dissemination11,12. Thus far, only optical clocks have pushed towards quantum-limited performance13. By contrast, optical time transfer has not operated at the analogous quantum limit set by the number of received photons. Here we demonstrate time transfer with near quantum-limited acquisition and timing at 10,000 times lower received power than previous approaches14-24. Over 300 km between mountaintops in Hawaii with launched powers as low as 40 µW, distant sites are synchronized to 320 attoseconds. This nearly quantum-limited operation is critical for long-distance free-space links in which photons are few and amplification costly: at 4.0 mW transmit power, this approach can support 102 dB link loss, more than sufficient for future time transfer to geosynchronous orbits.

7.
Opt Express ; 31(3): 5042-5055, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36785456

RESUMO

Dual-comb spectroscopy measures greenhouse gas concentrations over kilometers of open air with high precision. However, the accuracy of these outdoor spectra is challenging to disentangle from the absorption model and the fluctuating, heterogenous concentrations over these paths. Relative to greenhouse gases, O2 concentrations are well-known and evenly mixed throughout the atmosphere. Assuming a constant O2 background, we can use O2 concentration measurements to evaluate the consistency of open-path dual-comb spectroscopy with laboratory-derived absorption models. To this end, we construct a dual-comb spectrometer spanning 1240 nm to 1700nm, which measures O2 absorption features in addition to CO2 and CH4. O2 concentration measurements across a 560 m round-trip outdoor path reach 0.1% precision in 10 minutes. Over seven days of shifting meteorology and spectrometer conditions, the measured O2 has -0.07% mean bias, and 90% of the measurements are within 0.4% of the expected hemisphere-average concentration. The excursions of up to 0.4% seem to track outdoor temperature and humidity, suggesting that accuracy may be limited by the O2 absorption model or by water interference. This simultaneous O2, CO2, and CH4 spectrometer will be useful for measuring accurate CO2 mole fractions over vertical or many-kilometer open-air paths, where the air density varies.

8.
Nature ; 610(7933): 667-673, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36198795

RESUMO

Two decades after its invention, the classic self-referenced frequency comb laser is an unrivalled ruler for frequency, time and distance metrology owing to the rigid spacing of its optical output1,2. As a consequence, it is now used in numerous sensing applications that require a combination of high bandwidth and high precision3-5. Many of these applications, however, are limited by the trade-offs inherent in the rigidity of the comb output and operate far from quantum-limited sensitivity. Here we demonstrate an agile programmable frequency comb where the pulse time and phase are digitally controlled with ±2-attosecond accuracy. This agility enables quantum-limited sensitivity in sensing applications as the programmable comb can be configured to coherently track weak returning pulse trains at the shot-noise limit. To highlight its capabilities, we use this programmable comb in a ranging system, reducing the required power to reach a given precision by about 5,000-fold compared with a conventional dual-comb system. This enables ranging at a mean photon per pulse number of 1/77 while retaining the full accuracy and precision of a rigid frequency comb. Beyond ranging and imaging6-12, applications in time and frequency metrology1,2,5,13-23, comb-based spectroscopy24-32, pump-probe experiments33 and compressive sensing34,35 should benefit from coherent control of the comb-pulse time and phase.

9.
Opt Express ; 30(21): 38684-38694, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36258427

RESUMO

Opto-optical loss modulation (OOM) for stabilization of the carrier-envelope offset (CEO) frequency of a femtosecond all-fiber laser is performed using a collinear geometry. Amplitude-modulated 1064 nm light is fiber coupled into an end-pumped semiconductor saturable absorber mirror (SESAM)-mode-locked all-polarization-maintaining erbium fiber femtosecond laser, where it optically modulates the loss of the SESAM resulting in modulation of the CEO frequency. A noise rejection bandwidth of 150 kHz is achieved when OOM and optical gain modulation are combined in a hybrid analog/digital loop. Collinear OOM provides a simple, all-fiber, high-bandwidth method for improving the CEO frequency stability of SESAM mode-locked fiber lasers.

10.
Sci Adv ; 7(14)2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33789900

RESUMO

Advances in spectroscopy have the potential to improve our understanding of agricultural processes and associated trace gas emissions. We implement field-deployed, open-path dual-comb spectroscopy (DCS) for precise multispecies emissions estimation from livestock. With broad atmospheric dual-comb spectra, we interrogate upwind and downwind paths from pens containing approximately 300 head of cattle, providing time-resolved concentration enhancements and fluxes of CH4, NH3, CO2, and H2O. The methane fluxes determined from DCS data and fluxes obtained with a colocated closed-path cavity ring-down spectroscopy gas analyzer agree to within 6%. The NH3 concentration retrievals have sensitivity of 10 parts per billion and yield corresponding NH3 fluxes with a statistical precision of 8% and low systematic uncertainty. Open-path DCS offers accurate multispecies agricultural gas flux quantification without external calibration and is easily extended to larger agricultural systems where point-sampling-based approaches are insufficient, presenting opportunities for field-scale biogeochemical studies and ecological monitoring.

11.
Opt Express ; 28(18): 26661-26675, 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32906936

RESUMO

During propagation through atmospheric turbulence, variations in the refractive index of air cause fluctuations in the time-of-flight of laser light. These timing jitter fluctuations are a major noise source for precision laser ranging, optical time transfer, and long-baseline interferometry. While there exist models that estimate the turbulence-induced timing jitter power spectra using parameters obtainable from conventional micrometeorological instruments, a direct and independent comparison of these models to measured timing jitter data has not been done. Here we perform this comparison, measuring turbulence-induced optical pulse timing jitter over a horizontal, near-ground path using frequency comb lasers while independently characterizing the turbulence along the path using a suite of micrometeorological sensors. We compare the power spectra of measured optical pulse timing jitter to predictions based on the measured micrometeorological data and standard turbulence theory. To further quantitatively compare the frequency comb data to the micrometeorological measurements, we extract and compare the refractive index structure parameter, Cn2, from both systems and find agreement to within a factor of 5 for wind speed >1 m/s, and further improvement is possible as wind speed increases. These results validate the use of conventional micrometeorological instruments in predicting optical timing jitter statistics over co-located laser beam paths.

12.
Opt Express ; 28(14): 20345-20361, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32680096

RESUMO

A major design goal for femtosecond fiber lasers is to increase the output power but not at the cost of increasing the noise level or narrowing the bandwidth. Here, we perform a computational study to optimize the cavity design of a femtosecond fiber laser that is passively modelocked with a semiconductor saturable absorbing mirror (SESAM). We use dynamical methods that are more than a thousand times faster than standard evolutionary methods. We show that we can obtain higher pulse energies and hence higher output powers by simultaneously increasing the output coupling ratio, the gain, and the anomalous group delay dispersion. We can obtain output pulses that are from 5 to 15 times the energy of the pulse in the current experimental design with no penalty in the noise level or bandwidth.

13.
Nat Commun ; 11(1): 3152, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561738

RESUMO

Spectrally resolved photoacoustic imaging is promising for label-free imaging in optically scattering materials. However, this technique often requires acquisition of a separate image at each wavelength of interest. This reduces imaging speeds and causes errors if the sample changes in time between images acquired at different wavelengths. We demonstrate a solution to this problem by using dual-comb spectroscopy for photoacoustic measurements. This approach enables a photoacoustic measurement at thousands of wavelengths simultaneously. In this technique, two optical-frequency combs are interfered on a sample and the resulting pressure wave is measured with an ultrasound transducer. This acoustic signal is processed in the frequency-domain to obtain an optical absorption spectrum. For a proof-of-concept demonstration, we measure photoacoustic signals from polymer films. The absorption spectra obtained from these measurements agree with those measured using a spectrophotometer. Improving the signal-to-noise ratio of the dual-comb photoacoustic spectrometer could enable high-speed spectrally resolved photoacoustic imaging.

14.
Opt Express ; 28(10): 14740-14752, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403509

RESUMO

This manuscript describes the design of a robust, mid-infrared dual-comb spectrometer operating in the 3.1-µm to 4-µm spectral window for future field applications. The design represents an improvement in system size, power consumption, and robustness relative to previous work while also providing a high spectral signal-to-noise ratio. We demonstrate a system quality factor of 2×106 and 30 hours of continuous operation over a 120-meter outdoor air path.

15.
Artigo em Inglês | MEDLINE | ID: mdl-31555337

RESUMO

We performed 7.5 weeks of path-integrated concentration measurements of CO2, CH4, H2O, and HDO over the city of Boulder, Colorado. An open-path dual-comb spectrometer simultaneously measured time-resolved data across a reference path, located near the mountains to the west of the city, and across an over-city path that intersected two-thirds of the city, including two major commuter arteries. By comparing the measured concentrations over the two paths when the wind is primarily out of the west, we observe daytime CO2 enhancements over the city. Given the warm weather and the measurement footprint, the dominant contribution to the CO2 enhancement is from city vehicle traffic. We use a Gaussian plume model combined with reported city traffic patterns to estimate city emissions of on-road CO2 as (6.2 ± 2.2) × 105 metric tons (t) CO2 yr-1 after correcting for non-traffic sources. Within the uncertainty, this value agrees with the city's bottom-up greenhouse gas inventory for the on-road vehicle sector of 4.5 × 105 t CO2 yr-1. Finally, we discuss experimental modifications that could lead to improved estimates from our path-integrated measurements.

16.
Opt Express ; 27(8): 11869-11876, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31053026

RESUMO

Si3N4 waveguides, pumped at 1550 nm, can provide spectrally smooth, broadband light for gas spectroscopy in the important 2 µm to 2.5 µm atmospheric water window, which is only partially accessible with silica-fiber based systems. By combining Er+ fiber frequency combs and supercontinuum generation in tailored Si3N4 waveguides, high signal-to-noise dual-comb spectroscopy spanning 2 µm to 2.5 µm is demonstrated. Acquired broadband dual-comb spectra of CO and CO2 agree well with database line shape models and have a spectral-signal-to-noise as high as 48/√s, showing that the high coherence between the two combs is retained in the Si3N4 supercontinuum generation. The dual-comb spectroscopy figure of merit is 6 × 106/√s, equivalent to that of all-fiber dual-comb spectroscopy systems in the 1.6 µm band. based on these results, future dual-comb spectroscopy can combine fiber comb technology with Si3N4 waveguides to access new spectral windows in a robust non-laboratory platform.

17.
Nat Commun ; 10(1): 1819, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-31000702

RESUMO

Future optical clock networks will require free-space optical time-frequency transfer between flying clocks. However, simple one-way or standard two-way time transfer between flying clocks will completely break down because of the time-of-flight variations and Doppler shifts associated with the strongly time-varying link distances. Here, we demonstrate an advanced, frequency comb-based optical two-way time-frequency transfer (O-TWTFT) that can successfully synchronize the optical timescales at two sites connected via a time-varying turbulent air path. The link between the two sites is established using either a quadcopter-mounted retroreflector or a swept delay line at speeds up to 24 ms-1. Despite 50-ps breakdown in time-of-flight reciprocity, the sites' timescales are synchronized to < 1 fs in time deviation. The corresponding sites' frequencies agree to ~ 10-18 despite 10-7 Doppler shifts. This work demonstrates comb-based O-TWTFT can enable free-space optical networks between airborne or satellite-borne optical clocks for precision navigation, timing and probes of fundamental science.

18.
Nature ; 557(7703): 81-85, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29695870

RESUMO

Optical-frequency synthesizers, which generate frequency-stable light from a single microwave-frequency reference, are revolutionizing ultrafast science and metrology, but their size, power requirement and cost need to be reduced if they are to be more widely used. Integrated-photonics microchips can be used in high-coherence applications, such as data transmission 1 , highly optimized physical sensors 2 and harnessing quantum states 3 , to lower cost and increase efficiency and portability. Here we describe a method for synthesizing the absolute frequency of a lightwave signal, using integrated photonics to create a phase-coherent microwave-to-optical link. We use a heterogeneously integrated III-V/silicon tunable laser, which is guided by nonlinear frequency combs fabricated on separate silicon chips and pumped by off-chip lasers. The laser frequency output of our optical-frequency synthesizer can be programmed by a microwave clock across 4 terahertz near 1,550 nanometres (the telecommunications C-band) with 1 hertz resolution. Our measurements verify that the output of the synthesizer is exceptionally stable across this region (synthesis error of 7.7 × 10-15 or below). Any application of an optical-frequency source could benefit from the high-precision optical synthesis presented here. Leveraging high-volume semiconductor processing built around advanced materials could allow such low-cost, low-power and compact integrated-photonics devices to be widely used.

19.
Phys Rev Lett ; 120(5): 050801, 2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-29481163

RESUMO

We demonstrate carrier-phase optical two-way time-frequency transfer (carrier-phase OTWTFT) through the two-way exchange of frequency comb pulses. Carrier-phase OTWTFT achieves frequency comparisons with a residual instability of 1.2×10^{-17} at 1 s across a turbulent 4-km free space link, surpassing previous OTWTFT by 10-20 times and enabling future high-precision optical clock networks. Furthermore, by exploiting the carrier phase, this approach is able to continuously track changes in the relative optical phase of distant optical oscillators to 9 mrad (7 as) at 1 s averaging, effectively extending optical phase coherence over a broad spatial network for applications such as correlated spectroscopy between distant atomic clocks.

20.
J Quant Spectrosc Radiat Transf ; 217: 189-212, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32913374

RESUMO

We report argon-broadened water vapor transition parameters and their temperature dependence based on measured spectra spanning 6801-7188 cm-1 from a broad-bandwidth, high-resolution dual frequency comb spectrometer. The 25 collected spectra of 2% water vapor in argon ranged from 296 K to 1305 K with total pressure spanning 100 Torr to 600 Torr. A multispectrum fitting routine was used in conjunction with a quadratic speed-dependent Voigt profile to extract broadening and shift parameters, and a power-law temperature-dependence exponent for both. The measurements represent the first broad bandwidth, argon-broadened water vapor absorption study, and are an important step toward a foreign-gas-perturbed, high-temperature database developed using advanced lineshape profiles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA