Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2539: 213-220, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35895206

RESUMO

Photosynthetic efficiency is increasingly recognized as an integration of plant responses to dynamic environments, establishing the need for data sets from both field trials and controlled environments. A robotic field scanner phenotyping platform at the University of Arizona is equipped with a high-throughput chlorophyll fluorescence imaging system capable of collecting data on field trials for genetic studies of a photosynthetic trait (Fv/Fm). A description of the fluorescence imaging system is provided in addition to methods for measurements across experimental field plots and a test to determine the impact of variable plant heights. The overall focus is on aspects of field applications of a chlorophyll fluorescence imaging system that differ from analogous systems in controlled environments.


Assuntos
Clorofila , Procedimentos Cirúrgicos Robóticos , Fluorescência , Imagem Óptica , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Plantas/genética , Plantas/metabolismo
2.
Genes (Basel) ; 13(2)2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35205338

RESUMO

Osmotic adjustment (OA) is a major component of drought resistance in crops. The genetic basis of OA in wheat and other crops remains largely unknown. In this study, 248 field-grown durum wheat elite accessions grown under well-watered conditions, underwent a progressively severe drought treatment started at heading. Leaf samples were collected at heading and 17 days later. The following traits were considered: flowering time (FT), leaf relative water content (RWC), osmotic potential (ψs), OA, chlorophyll content (SPAD), and leaf rolling (LR). The high variability (3.89-fold) in OA among drought-stressed accessions resulted in high repeatability of the trait (h2 = 72.3%). Notably, a high positive correlation (r = 0.78) between OA and RWC was found under severe drought conditions. A genome-wide association study (GWAS) revealed 15 significant QTLs (Quantitative Trait Loci) for OA (global R2 = 63.6%), as well as eight major QTL hotspots/clusters on chromosome arms 1BL, 2BL, 4AL, 5AL, 6AL, 6BL, and 7BS, where a higher OA capacity was positively associated with RWC and/or SPAD, and negatively with LR, indicating a beneficial effect of OA on the water status of the plant. The comparative analysis with the results of 15 previous field trials conducted under varying water regimes showed concurrent effects of five OA QTL cluster hotspots on normalized difference vegetation index (NDVI), thousand-kernel weight (TKW), and/or grain yield (GY). Gene content analysis of the cluster regions revealed the presence of several candidate genes, including bidirectional sugar transporter SWEET, rhomboid-like protein, and S-adenosyl-L-methionine-dependent methyltransferases superfamily protein, as well as DREB1. Our results support OA as a valuable proxy for marker-assisted selection (MAS) aimed at enhancing drought resistance in wheat.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Secas , Locos de Características Quantitativas , Triticum/genética , Água
3.
Plant Cell Environ ; 44(9): 2858-2878, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34189744

RESUMO

Chlorophyll fluorescence (ChlF) is a powerful non-invasive technique for probing photosynthesis. Although proposed as a method for drought tolerance screening, ChlF has not yet been fully adopted in physiological breeding, mainly due to limitations in high-throughput field phenotyping capabilities. The light-induced fluorescence transient (LIFT) sensor has recently been shown to reliably provide active ChlF data for rapid and remote characterisation of plant photosynthetic performance. We used the LIFT sensor to quantify photosynthesis traits across time in a large panel of durum wheat genotypes subjected to a progressive drought in replicated field trials over two growing seasons. The photosynthetic performance was measured at the canopy level by means of the operating efficiency of Photosystem II ( Fq'/Fm' ) and the kinetics of electron transport measured by reoxidation rates ( Fr1' and Fr2' ). Short- and long-term changes in ChlF traits were found in response to soil water availability and due to interactions with weather fluctuations. In mild drought, Fq'/Fm' and Fr2' were little affected, while Fr1' was consistently accelerated in water-limited compared to well-watered plants, increasingly so with rising vapour pressure deficit. This high-throughput approach allowed assessment of the native genetic diversity in ChlF traits while considering the diurnal dynamics of photosynthesis.


Assuntos
Fotossíntese/genética , Triticum/genética , Clorofila/metabolismo , Desidratação , Transporte de Elétrons , Estudos de Associação Genética , Variação Genética , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Fluorescência Quantitativa Induzida por Luz , Característica Quantitativa Herdável , Triticum/metabolismo , Triticum/fisiologia
4.
Phytopathology ; 109(12): 2152-2160, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31339468

RESUMO

Wheat stem rust, caused by Puccinia graminis f. sp. tritici, is a re-emerging disease exemplified by recent epidemics caused by new virulent races. Understanding the sources and origins of genetic variations in the pathogen populations globally can facilitate the development of better strategies in disease management. We analyzed 68 wheat stem rust samples collected between 2013 and 2015 from Georgia where stem rust incidences are frequent and the alternate host, common barberry, is present. A total of 116 single-pustule isolates were derived and evaluated on stem rust differential lines to determine the virulence phenotypes and 23 races were identified, many of which were detected for the first time. Unique virulence combinations including, Sr22+Sr24 and Sr13b+Sr35+Sr37 were detected. These virulence combinations pose new challenges to breeding programs because many of these genes are used in breeding for resistance to the Ug99 race group. Sixty-one isolates were genotyped using a custom single-nucleotide polymorphism chip and 17 genotypes were identified. The 2013 isolates contained 11 multilocus genotypes compared with isolates of 2014 and 2015, with five and three genotypes, respectively. The higher levels of virulence and genotypic diversity observed in the 2013 samples strongly indicated that sexual recombination occurs in the Georgian P. graminis f. sp. tritici population, and that the Caucasus region of Eurasia may be an important source of new races.[Formula: see text] Copyright © 2019 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Basidiomycota , Variação Genética , Triticum , Basidiomycota/genética , Genótipo , República da Geórgia , Fenótipo , Doenças das Plantas/microbiologia , Triticum/microbiologia
5.
Front Big Data ; 2: 37, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-33693360

RESUMO

The recently developed OPtical TRApezoid Model (OPTRAM) has been successfully applied for watershed scale soil moisture (SM) estimation based on remotely sensed shortwave infrared (SWIR) transformed reflectance (TRSWIR) and the normalized difference vegetation index (NDVI). This study is aimed at the evaluation of OPTRAM for field scale precision agriculture applications using ultrahigh spatial resolution optical observations obtained with one of the world's largest field robotic phenotyping scanners located in Maricopa, Arizona. We replaced NDVI with the soil adjusted vegetation index (SAVI), which has been shown to be more accurate for cropped agricultural fields that transition from bare soil to dense vegetation cover. The OPTRAM was parameterized based on the trapezoidal geometry of the pixel distribution within the TRSWIR-SAVI space, from which wet- and dry-edge parameters were determined. The accuracy of the resultant SM estimates is evaluated based on a comparison with ground reference measurements obtained with Time Domain Reflectometry (TDR) sensors deployed to monitor surface, near-surface and root zone SM. The obtained results indicate an SM estimation error between 0.045 and 0.057 cm3 cm-3 for the near-surface and root zone, respectively. The high resolution SM maps clearly capture the spatial SM variability at the sensor locations. These findings and the presented framework can be applied in conjunction with Unmanned Aerial System (UAS) observations to assist with farm scale precision irrigation management to improve water use efficiency of cropping systems and conserve water in water-limited regions of the world.

6.
Front Plant Sci ; 9: 893, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29997645

RESUMO

High-throughput phenotyping platforms (HTPPs) provide novel opportunities to more effectively dissect the genetic basis of drought-adaptive traits. This genome-wide association study (GWAS) compares the results obtained with two Unmanned Aerial Vehicles (UAVs) and a ground-based platform used to measure Normalized Difference Vegetation Index (NDVI) in a panel of 248 elite durum wheat (Triticum turgidum L. ssp. durum Desf.) accessions at different growth stages and water regimes. Our results suggest increased ability of aerial over ground-based platforms to detect quantitative trait loci (QTL) for NDVI, particularly under terminal drought stress, with 22 and 16 single QTLs detected, respectively, and accounting for 89.6 vs. 64.7% phenotypic variance based on multiple QTL models. Additionally, the durum panel was investigated for leaf chlorophyll content (SPAD), leaf rolling and dry biomass under terminal drought stress. In total, 46 significant QTLs affected NDVI across platforms, 22 of which showed concomitant effects on leaf greenness, 2 on leaf rolling and 10 on biomass. Among 9 QTL hotspots on chromosomes 1A, 1B, 2B, 4B, 5B, 6B, and 7B that influenced NDVI and other drought-adaptive traits, 8 showed per se effects unrelated to phenology.

8.
G3 (Bethesda) ; 7(10): 3481-3490, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28855282

RESUMO

Wheat stem rust, caused by Puccinia graminis f. sp. tritici Eriks. & E. Henn, can incur yield losses in susceptible cultivars of durum wheat, Triticum turgidum ssp. durum (Desf.) Husnot. Although several durum cultivars possess the stem rust resistance gene Sr13, additional genes in durum wheat effective against emerging virulent races have not been described. Durum line 8155-B1 confers resistance against the P. graminis f. sp. tritici race TTKST, the variant race of the Ug99 race group with additional virulence to wheat stem rust resistance gene Sr24 However, 8155-B1 does not confer resistance to the first-described race in the Ug99 race group: TTKSK. We mapped a single gene conferring resistance in 8155-B1 against race TTKST, Sr8155B1, to chromosome arm 6AS by utilizing Rusty/8155-B1 and Rusty*2/8155-B1 populations and the 90K Infinium iSelect Custom bead chip supplemented by KASP assays. One marker, KASP_6AS_IWB10558, cosegregated with Sr8155B1 in both populations and correctly predicted Sr8155B1 presence or absence in 11 durum cultivars tested. We confirmed the presence of Sr8155B1 in cultivar Mountrail by mapping in the population Choteau/Mountrail. The marker developed in this study could be used to predict the presence of resistance to race TTKST in uncharacterized durum breeding lines, and also to combine Sr8155B1 with resistance genes effective to Ug99 such as Sr13 The map location of Sr8155B1 cannot rule out the possibility that this gene is an allele at the Sr8 locus. However, race specificity indicates that Sr8155B1 is different from the known alleles Sr8a and Sr8b.


Assuntos
Basidiomycota , Resistência à Doença/genética , Doenças das Plantas/genética , Triticum/genética , Alelos , Basidiomycota/genética , Fenótipo , Caules de Planta/genética , Caules de Planta/microbiologia , Polimorfismo de Nucleotídeo Único , Triticum/microbiologia
9.
Phytopathology ; 106(7): 729-36, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27019064

RESUMO

Frequent emergence of new variants in the Puccinia graminis f. sp. tritici Ug99 race group in Kenya has made pathogen survey a priority. We analyzed 140 isolates from 78 P. graminis f. sp. tritici samples collected in Kenya between 2008 and 2014 and identified six races, including three not detected prior to 2013. Genotypic analysis of 20 isolates from 2013 and 2014 collections showed that the new races TTHST, TTKTK, and TTKTT belong to the Ug99 race group. International advanced breeding lines were evaluated against an isolate of TTKTT (Sr31, Sr24, and SrTmp virulence) at the seedling stage. From 169 advanced lines from Kenya, 23% of lines with resistance to races TTKSK and TTKST were susceptible to TTKTT and, from two North American regional nurseries, 44 and 91% of resistant lines were susceptible. Three lines with combined resistance genes were developed to facilitate pathogen monitoring and race identification. These results indicate the increasing virulence and variability in the Kenyan P. graminis f. sp. tritici population and reveal vulnerabilities of elite germplasm to new races.


Assuntos
Basidiomycota/patogenicidade , Triticum/microbiologia , Basidiomycota/genética , Técnicas de Genotipagem , Quênia , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Virulência
10.
Phytopathology ; 105(7): 917-28, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25775107

RESUMO

A severe stem rust epidemic occurred in southern Ethiopia during November 2013 to January 2014, with yield losses close to 100% on the most widely grown wheat cultivar, 'Digalu'. Sixty-four stem rust samples collected from the regions were analyzed. A meteorological model for airborne spore dispersal was used to identify which regions were most likely to have been infected from postulated sites of initial infection. Based on the analyses of 106 single-pustule isolates derived from these samples, four races of Puccinia graminis f. sp. tritici were identified: TKTTF, TTKSK, RRTTF, and JRCQC. Race TKTTF was found to be the primary cause of the epidemic in the southeastern zones of Bale and Arsi. Isolates of race TKTTF were first identified in samples collected in early October 2013 from West Arsi. It was the sole or predominant race in 31 samples collected from Bale and Arsi zones after the stem rust epidemic was established. Race TTKSK was recovered from 15 samples from Bale and Arsi zones at low frequencies. Genotyping indicated that isolates of race TKTTF belongs to a genetic lineage that is different from the Ug99 race group and is composed of two distinct genetic types. Results from evaluation of selected germplasm indicated that some cultivars and breeding lines resistant to the Ug99 race group are susceptible to race TKTTF. Appearance of race TKTTF and the ensuing epidemic underlines the continuing threats and challenges posed by stem rust not only in East Africa but also to wider-scale wheat production.


Assuntos
Basidiomycota/genética , Triticum/microbiologia , Etiópia , Genótipo , Interações Hospedeiro-Patógeno , Fenótipo , Doenças das Plantas/genética
11.
J Am Assoc Nurse Pract ; 25(6): 302-308, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24170594

RESUMO

PURPOSE: To stimulate critical thought about sociocultural implications of unrecognized and undiagnosed attention deficit hyperactivity disorder (ADHD), and how these factors interface with healthcare delivery models and care that nurse practitioners (NPs) provide. DATA SOURCES: Health science databases--Psych Info, Proquest, Sage, PubMed, and authors' professional experiences. CONCLUSIONS: NPs, often the main healthcare provider for underserved populations in community practice settings, have little training in assessing adult ADHD. ADHD, often unrecognized and undiagnosed among adults, contributes to global impairments adversely affecting individuals' social, behavioral, academic, and cognitive functioning. Increased insight and awareness about adult ADHD is warranted to facilitate appropriate diagnosis. IMPLICATIONS FOR PRACTICE: ADHD is found in all sectors of our society; however, assessment and diagnosis among those whose socioeconomic status limits access to resources is a problem. Working in integrated care clinical settings facilitates recognition of patient problems and colocates resources required to manage the ADHD patient effectively. While this practice model may not be the norm, it is critical for NPs to have: (a) heightened awareness of the presentation of adult ADHD; (b) skills and/or resources to facilitate proper diagnosis of adult ADHD, and (c) models of practice that support optimal NP care delivery.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Profissionais de Enfermagem , Papel do Profissional de Enfermagem , Adulto , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Transtorno do Deficit de Atenção com Hiperatividade/terapia , Humanos
12.
Phytopathology ; 100(10): 986-96, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20839934

RESUMO

Cronartium ribicola, causal agent of white pine blister rust, is a macrocyclic heteroecious rust that cycles between white pines and members of the genus Ribes, which are typically wild plants in North America. To improve predictability of inoculum available for infection of ecologically and commercially important white pines, this research was conducted to identify the factors that influence the development and persistence of uredinia and telia on Ribes in their natural habitats. Numbers of infectious C. ribicola rust lesions (with potentially sporulating rust sori) on tagged Ribes missouriense plants in the woods fluctuated during the season. Changes in numbers of infectious rust lesions were related to rain that occurred 13 days earlier. In field experiments, supplemental leaf wetness provided for 2 days on Ribes shoots resulted in the development of rust lesions more frequently than on control shoots. Viable inoculum and susceptible hosts were present, and the environment was the limiting factor for disease development. Lesion necrosis and leaf abscission contributed to decreases in numbers of infectious rust lesions. Higher lesion density was significantly related to earlier leaf abscission. Telial fruiting bodies occurred in low numbers from early June throughout the remainder of the season.


Assuntos
Basidiomycota/fisiologia , Ribes/microbiologia , Estações do Ano , Interações Hospedeiro-Patógeno , Folhas de Planta/microbiologia , Chuva , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA