Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(2)2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31963291

RESUMO

Doppler Radar Tomography (DRT) relies on spatial diversity from rotational motion of a target rather than spectral diversity from wide bandwidth signals. The slow-time k-space is a novel form of the spatial frequency space generated by the relative rotational motion of a target at a single radar frequency, which can be exploited for high-resolution target imaging by a narrowband radar with Doppler tomographic signal processing. This paper builds on a previously published work and demonstrates, with real experimental data, a unique and interesting characteristic of the slow-time k-space: it can be augmented and significantly enhance imaging resolution by signal processing. High resolution can reveal finer details in the image, providing more information to identify unknown targets detected by the radar.

2.
Opt Lett ; 44(5): 1134-1137, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30821731

RESUMO

As technology continues to advance, the development of novel sensing systems opens new possibilities for low-cost, practical biosensing applications. In this Letter, we demonstrate a localized surface plasmon resonance system that combines both wave-guiding and plasmonic resonance sensing with a single microstructured polymeric structure. Characterizing the sensor using the finite element method simulation shows, to the best of our knowledge, a record wavelength sensitivity (WS) of 111000 nm/refractive index unit (RIU), high amplitude sensitivity (AS) of 2050 RIU-1, high sensor resolution and limit of detection of 9×10-7 RIU and 8.12×10-12 RIU2/nm, respectively. Furthermore, these sensors have the capability to detect an analyte within the refractive index range of 1.33-1.43 in the visible to mid-IR, therefore being potentially suitable for applications in biomolecular and chemical analyte detection.


Assuntos
Ressonância de Plasmônio de Superfície/instrumentação , Desenho de Equipamento , Análise de Elementos Finitos , Limite de Detecção
3.
Opt Express ; 26(23): 30347-30361, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30469909

RESUMO

We propose and numerically characterize the optical characteristics of a novel photonic crystal fiber (PCF) based surface plasmon resonance (SPR) sensor in the visible to near infrared (500-2000 nm) region for refractive index (RI) sensing. The finite element method (FEM) is used to design and study the influence of different geometric parameters on the sensing performance of the sensor. The chemically stable plasmonic material gold (Au) is used to produce excitation between the core and plasmonic mode. On a pure silica (SiO2) substrate, a rectangular structured core is used to facilitate the coupling strength between the core and the surface plasmon polariton (SPP) mode and thus improves the sensing performance. By tuning the geometric parameters, simulation results show a maximum wavelength sensitivity of 58000 nm/RIU (Refractive Index Unit) for the x polarization and 62000 nm/RIU for the y polarization for analyte refractive indices ranging from 1.33 to 1.43. Moreover, we characterize the amplitude sensitivity of the sensor that shows a maximum sensitivity of 1415 RIU-1 and 1293 RIU-1 for the x and y polarizations, respectively. To our knowledge, this is the highest sensitivity for an SPR in published literature, and facilitates future development of sensors for accurate and precise analyte measurement. The sensor also attains a maximum figure of merit (FOM) of 1140 and fine RI resolution of 1.6 × 10-6. Owing to strong coupling strength, high sensitivity, high FOM and improved sensing resolution, the proposed sensor is suited for real-time, inexpensive and accurate detection of biomedical and biological analytes, biomolecules, and organic chemicals.

4.
Appl Opt ; 57(10): 2426-2433, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29714225

RESUMO

Ethanol is widely used in chemical industrial processes as well as in the food and beverage industry. Therefore, methods of detecting alcohol must be accurate, precise, and reliable. In this content, a novel Zeonex-based photonic crystal fiber (PCF) has been modeled and analyzed for ethanol detection in terahertz frequency range. A finite-element-method-based simulation of the PCF sensor shows a high relative sensitivity of 68.87% with negligible confinement loss of 7.79×10-12 cm-1 at 1 THz frequency and x-polarization mode. Moreover, the core power fraction, birefringence, effective material loss, dispersion, and numerical aperture are also determined in the terahertz frequency range. Owing to the simple fiber structure, existing fabrication methods are feasible. With the outstanding waveguiding properties, the proposed sensor can potentially be used in ethanol detection, as well as polarization-preserving applications of terahertz waves.


Assuntos
Etanol/análise , Tecnologia de Fibra Óptica/instrumentação , Espectroscopia Terahertz/instrumentação , Birrefringência , Simulação por Computador , Desenho de Equipamento , Modelos Teóricos , Radiação Terahertz , Espectroscopia Terahertz/métodos
5.
Appl Opt ; 57(4): 666-672, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29400735

RESUMO

We report on the design, in-depth analysis, and characterization of a novel elliptical array shaped core rectangular shaped cladded photonic crystal fiber (PCF) for multichannel communication and polarization maintaining applications of terahertz waves. The asymmetrical structure of air holes in both core and cladding results in increased birefringence, while a compact geometry and different cladding air hole size makes the dispersion characteristic flat. The modal characteristics of the PCF are calculated using a finite element method. The simulated results show a near-zero dispersion flattened property of ±0.02 ps/THz/cm, high birefringence of 0.063, low effective material loss of 0.06 cm-1, and negligible confinement loss of 5.45×10-13 cm-1 in the terahertz frequency range. Additionally, the core power fraction, effective area, physical attributes, and potential fabrication possibilities of the fiber are discussed.

6.
Sensors (Basel) ; 15(12): 30856-69, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26670235

RESUMO

Subspace-based high-resolution direction of arrival (DOA) estimation significantly deteriorates under array manifold perturbation and rank deficiency of the covariance matrix due to mutual coupling and multipath propagation, respectively. In this correspondence, the unknown mutual coupling can be circumvented by the proposed method without any passive or active calibration process, and the DOA of the coherent signals can be accurately estimated accordingly. With a newly constructed matrix, the deficient rank can be restored, and the effective array aperture can be extended compared with conventional spatial smoothing. The proposed method achieves a good robustness and DOA estimation accuracy with unknown mutual coupling. The simulation results demonstrate the validity and efficiency of the proposed method.

7.
R Soc Open Sci ; 2(12): 150322, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27019723

RESUMO

Millimetre-waves offer the possibility of wide bandwidth and consequently high data rate for wireless communications. For both uni- and dual-polarized systems, signals sent over a link may suffer severe degradation due to antenna misalignment. Orientation robustness may be enhanced by the use of mutual orthogonality in three dimensions. Multiple-input multiple-output polarization diversity offers a way of improving signal reception without the limitations associated with spatial diversity. Scattering effects often assist propagation through multipath. However, high path loss at millimetre-wave frequencies may limit any reception enhancement through scattering. We show that the inclusion of a third orthogonal dipole provides orientation robustness in this setting, as well as in a rich scattering environment, by means of a Rician fading channel model covering all orientations for a millimetre-wave, tri-orthogonal, half-wave dipole transmitter and receiver employing polarization diversity. Our simulation extends the analysis into three dimensions, fully exploiting individual sub-channel paths. In both the presence and absence of multipath effects, capacity is observed to be higher than that of a dual-polarized system over the majority of a field of view.

8.
PLoS One ; 9(4): e95943, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24781033

RESUMO

In this paper, we demonstrate a comprehensive method for segmenting the retinal vasculature in camera images of the fundus. This is of interest in the area of diagnostics for eye diseases that affect the blood vessels in the eye. In a departure from other state-of-the-art methods, vessels are first pre-grouped together with graph partitioning, using a spectral clustering technique based on morphological features. Local curvature is estimated over the whole image using eigenvalues of Hessian matrix in order to enhance the vessels, which appear as ridges in images of the retina. The result is combined with a binarized image, obtained using a threshold that maximizes entropy, to extract the retinal vessels from the background. Speckle type noise is reduced by applying a connectivity constraint on the extracted curvature based enhanced image. This constraint is varied over the image according to each region's predominant blood vessel size. The resultant image exhibits the central light reflex of retinal arteries and veins, which prevents the segmentation of whole vessels. To address this, the earlier entropy-based binarization technique is repeated on the original image, but crucially, with a different threshold to incorporate the central reflex vessels. The final segmentation is achieved by combining the segmented vessels with and without central light reflex. We carry out our approach on DRIVE and REVIEW, two publicly available collections of retinal images for research purposes. The obtained results are compared with state-of-the-art methods in the literature using metrics such as sensitivity (true positive rate), selectivity (false positive rate) and accuracy rates for the DRIVE images and measured vessel widths for the REVIEW images. Our approach out-performs the methods in the literature.


Assuntos
Entropia , Retina/anatomia & histologia , Humanos
9.
PLoS One ; 8(2): e54998, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23437047

RESUMO

In this paper, we develop two automated authorship attribution schemes, one based on Multiple Discriminant Analysis (MDA) and the other based on a Support Vector Machine (SVM). The classification features we exploit are based on word frequencies in the text. We adopt an approach of preprocessing each text by stripping it of all characters except a-z and space. This is in order to increase the portability of the software to different types of texts. We test the methodology on a corpus of undisputed English texts, and use leave-one-out cross validation to demonstrate classification accuracies in excess of 90%. We further test our methods on the Federalist Papers, which have a partly disputed authorship and a fair degree of scholarly consensus. And finally, we apply our methodology to the question of the authorship of the Letter to the Hebrews by comparing it against a number of original Greek texts of known authorship. These tests identify where some of the limitations lie, motivating a number of open questions for future work. An open source implementation of our methodology is freely available for use at https://github.com/matthewberryman/author-detection.


Assuntos
Autoria , Análise Discriminante , Máquina de Vetores de Suporte , Automação , Bases de Dados como Assunto , Idioma , Funções Verossimilhança , Livros de Texto como Assunto
10.
Opt Express ; 20(5): 4968-78, 2012 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-22418301

RESUMO

A low-cost terahertz beam-splitter is fabricated using ultra-thin LDPE plastic sheeting coated with a conducting silver layer. The beam splitting ratio is determined as a function of the thickness of the silver layer--thus any required splitting ratio can be printed on demand with a suitable rapid prototyping technology. The low-cost aspect is a consequence of the fact that ultra-thin LDPE sheeting is readily obtainable, known more commonly as domestic plastic wrap or cling wrap. The proposed beam-splitter has numerous advantages over float zone silicon wafers commonly used within the terahertz frequency range. These advantages include low-cost, ease of handling, ultra-thin thickness, and any required beam splitting ratio can be readily fabricated. Furthermore, as the beam-splitter is ultra-thin, it presents low loss and does not suffer from Fabry-Pérot effects. Measurements performed on manufactured prototypes with different splitting ratios demonstrate a good agreement with our theoretical model in both P and S polarizations, exhibiting nearly frequency-independent splitting ratios in the terahertz frequency range.


Assuntos
Interferometria/instrumentação , Refratometria/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Radiação Terahertz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA