Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 52(45): 16974-16983, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37933188

RESUMO

New 1,2-azolylamidino complexes fac-[RuCl(DMSO)3(NHC(R)az*-κ2N,N)]OTf [R = Me (2), Ph (3); az* = pz (pyrazolyl, a), indz (indazolyl, b)] are synthesized via chloride abstraction from their corresponding precursors cis,fac-[RuCl2(DMSO)3(az*H)] (1) after subsequent base-catalyzed coupling of the appropriate nitrile with the 1,2-azole previously coordinated. All the compounds are characterized by 1H NMR, 13C NMR and IR spectroscopy. Those derived from MeCN are also characterized by X-ray diffraction. Electrochemical studies showed several reduction waves in the range of -1.5 to -3 V. The electrochemical behavior in CO2 media is consistent with CO2 electrocatalytic reduction. The catalytic activity expressed as [icat(CO2)/ip(Ar)] ranged from 1.7 to 3.7 for the 1,2-azolylamidino complexes at voltages of ca. -2.7 to -3 V vs. ferrocene/ferrocenium. Controlled potential electrolysis showed rapid decomposition of the Ru catalysts. Photocatalytic CO2 reduction experiments using compounds 1b, 2b and 3b carried out in a CO2-saturated MeCN/TEOA (4 : 1 v/v) solution containing a mixture of the catalyst and [Ru(bipy)3]2+ as the photosensitizer under continuous irradiation (light intensity of 150 mW cm-2 at 25 °C, λ > 300 nm) show that compounds 1b, 2b and 3b allowed CO2 reduction catalysis, producing CO and trace amounts of formate. The combined turnover number for the production of formate and CO is ca. 100 after 8 h and follows the order 1b < 2b ≈ 3b.

2.
Chem Commun (Camb) ; 57(36): 4396-4399, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33949479

RESUMO

Inspired by the architecture of the macrocycle of heme d1, a series of synthetic mono-, di- and tri-ß-oxo-substituted porphyrinoid cobalt(ii) complexes were evaluated as electrocatalytic CO2 reducers, identifying complexes of unusually high efficiencies in generating multi-electron reduction products, including CH4.

3.
EFSA J ; 19(4): e190401, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33968256

RESUMO

The mapping of the EU coordination and cooperation mechanisms of risk communication in the field of food safety (i.e. encompassing all matters pertaining to the feed and food chain) was conducted for the European Food Safety Authority (EFSA), following a mandate by the European Commission, to inform the General Plan for Risk Communication that the Commission will set out. This study focuses on communication activities in 'peacetime' situations (i.e. non-crisis) on the published outputs of risk assessment and risk management. This is a specific part of the risk communication process defined in the General Food Law. Data were collected through an online survey of competent authority organisations involved in risk communication at national and regional levels in the EU-27 Member States and Norway; and interviews with selected organisations at Member State, EU and international levels. Based on these data, this report provides an overview of the current information flow of risk communication, in terms of whether and how organisations at all levels receive, produce, and disseminate risk communication material. The existing flows in each country are described and mapped in flow charts. Flows are also presented for each of the EU/international organisations involved in risk communication on food safety. A number of relevant networks are identified that actively engage in sharing/exchanges of risk communication material on food safety, including networks managed by EFSA. This project also highlighted certain challenges in current risk communication systems, and recommendations are made to address them. At national level, these are: an increase in resources dedicated to coordinating communication on EU food safety issues, to improve capacity to undertake this task; strengthen the cooperation and coordination between authorities involved in risk communication activities to ensure a more proactive approach. In addition, recommendations are provided to enhance further collaboration of communication activities at all levels (between Member States and with EFSA; between EU Agencies), so that the coordination of risk communication at EU level follows a partnership approach.

4.
Inorg Chem ; 60(6): 3572-3584, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33616393

RESUMO

The atomic-level tunability of molecular structures is a compelling reason to develop homogeneous catalysts for challenging reactions such as the electrochemical reduction of carbon dioxide to valuable C1-Cn products. Of particular interest is methane, the largest component of natural gas. Herein, we report a series of three isomeric rhenium tricarbonyl complexes coordinated by the asymmetric diimine ligands 2-(isoquinolin-1-yl)-4,5-dihydrooxazole (quin-1-oxa), 2-(quinolin-2-yl)-4,5-dihydrooxazole (quin-2-oxa), and 2-(isoquinolin-3-yl)-4,5-dihydrooxazole (quin-3-oxa) that catalyze the reduction of CO2 to carbon monoxide and methane, albeit the latter with a low efficiency. To our knowledge, these complexes are the first examples of rhenium(I) catalysts capable of converting carbon dioxide into methane. Re(quin-1-oxa)(CO)3Cl (1), Re(quin-2-oxa)(CO)3Cl (2), and Re(quin-3-oxa)(CO)3Cl (3) were characterized and studied using a variety of electrochemical and spectroscopic techniques. In bulk electrolysis experiments, the three complexes reduce CO2 to CO and CH4. When the controlled-potential electrolysis experiments are performed at -2.5 V (vs Fc+/0) and in the presence of the Brønsted acid 2,2,2-trifluoroethanol, methane is produced with turnover numbers that range from 1.3 to 1.8. Isotope labeling experiments using 13CO2 atmosphere produce 13CH4 (m/z = 17) confirming that methane originates from CO2 reduction. Theoretical calculations are performed to investigate the mechanistic aspects of the 8e-/8H+ reduction of CO2 to CH4. A ligand-assisted pathway is proposed to be an efficient pathway in the formation of CH4. Delocalization of the electron density on the (iso)quinoline moiety upon reduction stabilizes the key carbonyl intermediate leading to additional reactivity of this ligand. These results should aid the development of more robust catalytic systems that produce CH4 from CO2.

5.
Inorg Chem ; 60(2): 692-704, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33356209

RESUMO

New cis-(1,2-azole)-aquo bis(2,2'-bipyridyl)ruthenium(II) (1,2-azole (az*H) = pzH (pyrazole), dmpzH (3,5-dimethylpyrazole), and indzH (indazole)) complexes are synthesized via chlorido abstraction from cis-[Ru(bipy)2Cl(az*H)]OTf. The latter are obtained from cis-[Ru(bipy)2Cl2] after the subsequent coordination of the 1,2-azole. All the compounds are characterized by 1H, 13C, 15N NMR spectroscopy as well as IR spectroscopy. Two chlorido complexes (pzH and indzH) and two aquo complexes (indzH and dmpzH) are also characterized by X-ray diffraction. Photophysical and electrochemical studies were carried out on all the complexes. The photophysical data support the phosphorescence of the complexes. The electrochemical behavior of all the complexes in an Ar atmosphere indicate that the oxidation processes assigned to Ru(II) → Ru(III) occurs at higher potentials in the aquo complexes. The reduction processes under Ar lead to several waves, indicating that the complexes undergo successive electron-transfer reductions that are centered in the bipy ligands. The first electron reduction is reversible. The electrochemical behavior in CO2 media is consistent with CO2 electrocatalyzed reduction, where the values of the catalytic activity [icat(CO2)/ip(Ar)] ranged from 2.9 to 10.8. Controlled potential electrolysis of the chlorido and aquo complexes affords CO and formic acid, with the latter as the major product after 2 h. Photocatalytic experiments in MeCN with [Ru(bipy)3]Cl2 as the photosensitizer and TEOA as the electron donor, which were irradiated with >300 nm light for 24 h, led to CO and HCOOH as the main reduction products, achieving a combined turnover number (TONCO+HCOO-) as high as 107 for 2c after 24 h of irradiation.

6.
Inorg Chem ; 56(6): 3214-3226, 2017 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-28277679

RESUMO

A series of rhenium tricarbonyl complexes coordinated by asymmetric diimine ligands containing a pyridine moiety bound to an oxazoline ring were synthesized, structurally and electrochemically characterized, and screened for CO2 reduction ability. The reported complexes are of the type Re(N-N)(CO)3Cl, with N-N = 2-(pyridin-2-yl)-4,5-dihydrooxazole (1), 5-methyl-2-(pyridin-2-yl)-4,5-dihydrooxazole (2), and 5-phenyl-2-(pyridin-2-yl)-4,5-dihydrooxazole (3). The electrocatalytic reduction of CO2 by these complexes was observed in a variety of solvents and proceeds more quickly in acetonitrile than in dimethylformamide (DMF) and dimethyl sulfoxide (DMSO). The analysis of the catalytic cycle for electrochemical CO2 reduction by 1 in acetonitrile using density functional theory (DFT) supports the C-O bond cleavage step being the rate-determining step (RDS) (ΔG⧧ = 27.2 kcal mol-1). The dependency of the turnover frequencies (TOFs) on the donor number (DN) of the solvent also supports that C-O bond cleavage is the rate-determining step. Moreover, the calculations using explicit solvent molecules indicate that the solvent dependence likely arises from a protonation-first mechanism. Unlike other complexes derived from fac-Re(bpy)(CO)3Cl (I; bpy = 2,2'-bipyridine), in which one of the pyridyl moieties in the bpy ligand is replaced by another imine, no catalytic enhancement occurs during the first reduction potential. Remarkably, catalysts 1 and 2 display relative turnover frequencies, (icat/ip)2, up to 7 times larger than that of I.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA