Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 3849, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158508

RESUMO

DNA-RNA hybrid structures have been detected at the vicinity of DNA double-strand breaks (DSBs) occurring within transcriptional active regions of the genome. The induction of DNA-RNA hybrids strongly affects the repair of these DSBs, but the nature of these structures and how they are formed remain poorly understood. Here we provide evidence that R loops, three-stranded structures containing DNA-RNA hybrids and the displaced single-stranded DNA (ssDNA) can form at sub-telomeric DSBs. These R loops are generated independently of DNA resection but are induced alongside two-stranded DNA-RNA hybrids that form on ssDNA generated by DNA resection. We further identified UPF1, an RNA/DNA helicase, as a crucial factor that drives the formation of these R loops and DNA-RNA hybrids to stimulate DNA resection, homologous recombination, microhomology-mediated end joining and DNA damage checkpoint activation. Our data show that R loops and DNA-RNA hybrids are actively generated at DSBs to facilitate DNA repair.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , DNA/metabolismo , Estruturas R-Loop , RNA Helicases/metabolismo , Transativadores/metabolismo , Sequência de Bases , Linhagem Celular , Linhagem Celular Tumoral , DNA/química , DNA/genética , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Células HCT116 , Humanos , Hibridização de Ácido Nucleico , RNA/genética , RNA/metabolismo , RNA Helicases/genética , Interferência de RNA , Telômero/genética , Telômero/metabolismo , Transativadores/genética
2.
DNA Repair (Amst) ; 55: 7-16, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28501701

RESUMO

Homologous recombination plays a central role in the repair of double-strand DNA breaks, the restart of stalled replication forks and the generation of genetic diversity. Regulation of recombination is essential since defects can lead to genome instability and chromosomal rearrangements. Strand exchange is a key step of recombination - it is catalysed by RecA in bacteria, Rad51/Dmc1 in eukaryotes and RadA in archaea. RadB, a paralogue of RadA, is present in many archaeal species. RadB has previously been proposed to function as a recombination mediator, assisting in RadA-mediated strand exchange. In this study, we use the archaeon Haloferax volcanii to provide evidence to support this hypothesis. We show that RadB is required for efficient recombination and survival following treatment with DNA-damaging agents, and we identify two point mutations in radA that suppress the ΔradB phenotype. Analysis of these point mutations leads us to propose that the role of RadB is to act as a recombination mediator, which it does by inducing a conformational change in RadA and thereby promoting its polymerisation on DNA.


Assuntos
Proteínas Arqueais/metabolismo , Quebras de DNA de Cadeia Dupla , Haloferax volcanii/enzimologia , Recombinases Rec A/metabolismo , Reparo de DNA por Recombinação , Sequência de Aminoácidos , Proteínas Arqueais/química , DNA Arqueal/metabolismo , Haloferax volcanii/genética , Recombinases Rec A/química , Alinhamento de Sequência
3.
Nucleic Acids Res ; 43(10): 5017-32, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25925573

RESUMO

DNA-end resection, the generation of single-stranded DNA at DNA double strand break (DSB) ends, is critical for controlling the many cellular responses to breaks. Here we show that the conserved DNA damage checkpoint sliding clamp (the 9-1-1 complex) plays two opposing roles coordinating DSB resection in budding yeast. We show that the major effect of 9-1-1 is to inhibit resection by promoting the recruitment of Rad9(53BP1) near DSBs. However, 9-1-1 also stimulates resection by Exo1- and Dna2-Sgs1-dependent nuclease/helicase activities, and this can be observed in the absence of Rad9(53BP1). Our new data resolve the controversy in the literature about the effect of the 9-1-1 complex on DSB resection. Interestingly, the inhibitory role of 9-1-1 on resection is not observed near uncapped telomeres because less Rad9(53BP1) is recruited near uncapped telomeres. Thus, 9-1-1 both stimulates and inhibits resection and the effects of 9-1-1 are modulated by different regions of the genome. Our experiments illustrate the central role of the 9-1-1 checkpoint sliding clamp in the DNA damage response network that coordinates the response to broken DNA ends. Our results have implications in all eukaryotic cells.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , DNA Helicases/metabolismo , DNA Fúngico/metabolismo , Exodesoxirribonucleases/metabolismo , Deleção de Genes , Ligação Proteica , RecQ Helicases/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Telômero/metabolismo
4.
Nucleic Acids Res ; 42(16): 10516-28, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25122752

RESUMO

Single-stranded DNA (ssDNA) at DNA ends is an important regulator of the DNA damage response. Resection, the generation of ssDNA, affects DNA damage checkpoint activation, DNA repair pathway choice, ssDNA-associated mutation and replication fork stability. In eukaryotes, extensive DNA resection requires the nuclease Exo1 and nuclease/helicase pair: Dna2 and Sgs1(BLM). How Exo1 and Dna2-Sgs1(BLM) coordinate during resection remains poorly understood. The DNA damage checkpoint clamp (the 9-1-1 complex) has been reported to play an important role in stimulating resection but the exact mechanism remains unclear. Here we show that the human 9-1-1 complex enhances the cleavage of DNA by both DNA2 and EXO1 in vitro, showing that the resection-stimulatory role of the 9-1-1 complex is direct. We also show that in Saccharomyces cerevisiae, the 9-1-1 complex promotes both Dna2-Sgs1 and Exo1-dependent resection in response to uncapped telomeres. Our results suggest that the 9-1-1 complex facilitates resection by recruiting both Dna2-Sgs1 and Exo1 to sites of resection. This activity of the 9-1-1 complex in supporting resection is strongly inhibited by the checkpoint adaptor Rad9(53BP1). Our results provide important mechanistic insights into how DNA resection is regulated by checkpoint proteins and have implications for genome stability in eukaryotes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , DNA Helicases/metabolismo , DNA/metabolismo , Exodesoxirribonucleases/metabolismo , RecQ Helicases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , DNA Helicases/genética , Exodesoxirribonucleases/genética , Deleção de Genes , Humanos , RecQ Helicases/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Telômero/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA