Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 19(3): 619-628, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38330248

RESUMO

The tropical marine cyanobacterium Moorena producens JHB is a prolific source of secondary metabolites with potential biomedical utility. Previous studies on this strain led to the discovery of several novel compounds such as hectochlorins and jamaicamides. However, bioinformatic analyses of its genome indicate the presence of numerous cryptic biosynthetic gene clusters that have yet to be characterized. To potentially stimulate the production of novel compounds from this strain, it was cocultured with Candida albicans. From this experiment, we observed the increased production of a new compound that we characterize here as hectoramide B. Bioinformatic analysis of the M. producens JHB genome enabled the identification of a putative biosynthetic gene cluster responsible for hectoramide B biosynthesis. This work demonstrates that coculture competition experiments can be a valuable method to facilitate the discovery of novel natural products from cyanobacteria.


Assuntos
Cianobactérias , Depsipeptídeos , Candida albicans/genética , Técnicas de Cocultura , Cianobactérias/química , Depsipeptídeos/metabolismo , Família Multigênica
2.
J Am Chem Soc ; 145(34): 18716-18721, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37594919

RESUMO

The biosynthetic installation of halogen atoms is largely performed by oxidative halogenases that target a wide array of electron-rich substrates, including aromatic compounds and conjugated systems. Halogenated alkyne-containing molecules are known to occur in Nature; however, halogen atom installation on the terminus of an alkyne has not been demonstrated in enzyme catalysis. Herein, we report the discovery and characterization of an alkynyl halogenase in natural product biosynthesis. We show that the flavin-dependent halogenase from the jamaicamide biosynthetic pathway, JamD, is not only capable of terminal alkyne halogenation on a late-stage intermediate en route to the final natural product but also has broad substrate tolerance for simple to complex alkynes. Furthermore, JamD is specific for terminal alkynes over other electron-rich aromatic substrates and belongs to a newly identified family of halogenases from marine cyanobacteria, indicating its potential as a chemoselective biocatalyst for the formation of haloalkynes.


Assuntos
Produtos Biológicos , Halogenação , Halogênios , Alcinos , Catálise
3.
bioRxiv ; 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37461655

RESUMO

The tropical marine cyanobacterium Moorena producens JHB is a prolific source of secondary metabolites with potential biomedical utility. Previous studies of this strain led to the discovery of several novel compounds such as the hectochlorins and jamaicamides; however, bioinformatic analyses of its genome suggested that there were many more cryptic biosynthetic gene clusters yet to be characterized. To potentially stimulate the production of novel compounds from this strain, it was co-cultured with Candida albicans. From this experiment, we observed the increased production of a new compound that we characterize here as hectoramide B. Bioinformatic analysis of the M. producens JHB genome enabled the identification of a putative biosynthetic gene cluster responsible for hectoramide B biosynthesis. This work demonstrates that co-culture competition experiments can be a valuable method to facilitate the discovery of novel natural products from cyanobacteria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA