Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 33(25): e2100442, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33977595

RESUMO

A class of compounds sharing the properties of 2D materials and electrolytes, namely 2D electrolytes is described theoretically and demonstrated experimentally. 2D electrolytes dissociate in different solvents, such as water, and become electrically charged. The chemical and physical properties of these compounds can be controlled by external factors, such as pH, temperature, electric permittivity of the medium, and ionic concentration. 2D electrolytes, in analogy with polyelectrolytes, present reversible morphological transitions from 2D to 1D, as a function of pH, due to the interplay of the elastic and Coulomb energies. Since these materials show stimuli-responsive behavior to the environmental conditions, 2D electrolytes can be considered as a novel class of smart materials that expand the functionalities of 2D materials and are promising for applications that require stimuli-responsive demeanor, such as drug delivery, artificial muscles, and energy storage.

2.
Nanomaterials (Basel) ; 11(2)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671695

RESUMO

Graphene oxide (GO) is an oxygenated functionalized form of graphene that has received considerable attention because of its unique physical and chemical properties that are suitable for a large number of industrial applications. Herein, GO is rapidly obtained directly from the oxidation of graphene using an environmentally friendly modified Hummers method. As the starting material consists of graphene flakes, intercalant agents are not needed and the oxidation reaction is enhanced, leading to orders of magnitude reduction in the reaction time compared to the conventional methods of graphite oxidation. With a superior surface area, the graphene flakes are quickly and more homogeneously oxidized since the flakes are exposed at the same extension to the chemical agents, excluding the necessity of sonication to separate the stacked layers of graphite. This strategy shows an alternative approach to quickly producing GO with different degrees of oxidation that can be potentially used in distinct areas ranging from biomedical to energy storage applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA