Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Oncol ; 18(3): 726-742, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38225213

RESUMO

Prostate cancer is a frequent malignancy in older men and has a very high 5-year survival rate if diagnosed early. The prognosis is much less promising if the tumor has already spread outside the prostate gland. Targeted treatments mainly aim at blocking androgen receptor (AR) signaling and initially show good efficacy. However, tumor progression due to AR-dependent and AR-independent mechanisms is often observed after some time, and novel treatment strategies are urgently needed. Dysregulation of the PI3K/AKT/mTOR pathway in advanced prostate cancer and its implication in treatment resistance has been reported. We compared the impact of PI3K/AKT/mTOR pathway inhibitors with different selectivity profiles on in vitro cell proliferation and on caspase 3/7 activation as a marker for apoptosis induction, and observed the strongest effects in the androgen-sensitive prostate cancer cell lines VCaP and LNCaP. Combination treatment with the AR inhibitor darolutamide led to enhanced apoptosis in these cell lines, the effects being most pronounced upon cotreatment with the pan-PI3K inhibitor copanlisib. A subsequent transcriptomic analysis performed in VCaP cells revealed that combining darolutamide with copanlisib impacted gene expression much more than individual treatment. A comprehensive reversal of the androgen response and the mTORC1 transcriptional programs as well as a marked induction of DNA damage was observed. Next, an in vivo efficacy study was performed using the androgen-sensitive patient-derived prostate cancer (PDX) model LuCaP 35 and a superior efficacy was observed after the combined treatment with copanlisib and darolutamide. Importantly, immunohistochemistry analysis of these treated tumors showed increased apoptosis, as revealed by elevated levels of cleaved caspase 3 and Bcl-2-binding component 3 (BBC3). In conclusion, these data demonstrate that concurrent blockade of the PI3K/AKT/mTOR and AR pathways has superior antitumor efficacy and induces apoptosis in androgen-sensitive prostate cancer cell lines and PDX models.


Assuntos
Neoplasias da Próstata , Proteínas Proto-Oncogênicas c-akt , Masculino , Humanos , Idoso , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Androgênicos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Caspase 3 , Androgênios , Serina-Treonina Quinases TOR/metabolismo , Neoplasias da Próstata/genética , Proliferação de Células , Apoptose , Linhagem Celular Tumoral
2.
Cell Rep Med ; 5(2): 101381, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38244540

RESUMO

Neuroendocrine carcinomas, such as neuroendocrine prostate cancer and small-cell lung cancer, commonly have a poor prognosis and limited therapeutic options. We report that ubiquitin carboxy-terminal hydrolase L1 (UCHL1), a deubiquitinating enzyme, is elevated in tissues and plasma from patients with neuroendocrine carcinomas. Loss of UCHL1 decreases tumor growth and inhibits metastasis of these malignancies. UCHL1 maintains neuroendocrine differentiation and promotes cancer progression by regulating nucleoporin, POM121, and p53. UCHL1 binds, deubiquitinates, and stabilizes POM121 to regulate POM121-associated nuclear transport of E2F1 and c-MYC. Treatment with the UCHL1 inhibitor LDN-57444 slows tumor growth and metastasis across neuroendocrine carcinomas. The combination of UCHL1 inhibitors with cisplatin, the standard of care used for neuroendocrine carcinomas, significantly delays tumor growth in pre-clinical settings. Our study reveals mechanisms of UCHL1 function in regulating the progression of neuroendocrine carcinomas and identifies UCHL1 as a therapeutic target and potential molecular indicator for diagnosing and monitoring treatment responses in these malignancies.


Assuntos
Carcinoma Neuroendócrino , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Masculino , Humanos , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Carcinoma Neuroendócrino/tratamento farmacológico , Carcinoma Neuroendócrino/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamento farmacológico , Glicoproteínas de Membrana
3.
Prostate ; 84(1): 100-110, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37796107

RESUMO

BACKGROUND: Androgen receptor (AR) pathway inhibition remains the cornerstone for prostate cancer therapies. However, castration-resistant prostate cancer (CRPC) tumors can resist AR signaling inhibitors through AR amplification and AR splice variants in AR-positive CRPC (ARPC), and conversion to AR-null phenotypes, such as double-negative prostate cancer (DNPC) and small cell or neuroendocrine prostate cancer (SCNPC). We have shown previously that DNPC can bypass AR-dependence through fibroblast growth factor receptor (FGFR) signaling. However, the role of the FGFR pathway in other CRPC phenotypes has not been elucidated. METHODS: RNA-Seq analysis was conducted on patient metastases, LuCaP patient-derived xenograft (PDX) models, and CRPC cell lines. Cell lines (C4-2B, VCaP, and 22Rv1) and ex vivo LuCaP PDX tumor cells were treated with enzalutamide (ENZA) and FGFR inhibitors (FGFRi) alone or in combination and sensitivity was determined using cell viability assays. In vivo efficacy of FGFRi in ARPC, DNPC, and SCNPC were evaluated using PDX models. RESULTS: RNA-Seq analysis of FGFR signaling in metastatic specimens, LuCaP PDX models, and CRPC cell lines revealed significant FGF pathway activation in AR-low PC (ARLPC), DNPC, and SCNPC tumors. In vitro/ex vivo analysis of erdafitinib and CH5183284 demonstrated robust and moderate growth suppression of ARPC, respectively. In vivo studies using four ARPC PDX models showed that combination ENZA and CH5183284 significantly suppressed tumor growth. Additional in vivo studies using four ARPC PDX models revealed that erdafitinib monotherapy was as effective as ENZA in suppressing tumor growth, and there was limited combination benefit. Furthermore, two of three DNPC models and two of four SCNPC models responded to CH5183284 monotherapy, suggesting FGFRi responses were model dependent. RNA-Seq and gene set enrichment analysis of end-of-study ARPC tumors treated with FGFRi displayed decreased expression of E2F and MYC target genes and suppressed G2M checkpoint genes, whereas end-of-study SCNPC tumors had heterogeneous transcriptional responses. CONCLUSIONS: Although FGFRi treatments suppressed tumor growth across CRPC phenotypes, our analyses did not identify a single pathway or biomarker that would identify tumor response to FGFRi. This is very likely due to the array of FGFR1-4 expression and tumor phenotypes present in CRPC. Nevertheless, our data nominate the FGFR pathway as a clinically actionable target that promotes tumor growth in diverse phenotypes of treatment-refractory metastatic CRPC.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/farmacologia , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Antagonistas de Receptores de Andrógenos/farmacologia , Androgênios/farmacologia , Transdução de Sinais , Linhagem Celular Tumoral , Nitrilas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA