Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ind Eng Chem Res ; 62(21)2023.
Artigo em Inglês | MEDLINE | ID: mdl-38496765

RESUMO

Dynamic column breakthrough (DCB) measurements are valuable for characterizing the adsorption of gaseous species by solid sorbents and are typically used for high concentrations of adsorptives, often at elevated temperatures and pressures. However, adsorbents for the direct capture of carbon dioxide from natural air demand measurement capability at low partial pressures of CO2 at atmospherically relevant temperatures and pressures. We have developed a new apparatus focused on the measurement of DCB curves under typical tropospheric conditions. The new apparatus is described in detail and validated with breakthrough curve measurements. Adsorption capacities are reported at (233.1 to 323.1) K and (351 to 1078) hPa for low carbon dioxide concentrations on 13X zeolite samples on the order of a few hundred milligrams. Measurement uncertainties related to timing, flow, temperature, and concentrations are analyzed and the present results at 273 K, 298 K, and 323 K are compared with static measurements obtained with a manometric adsorption analyzer. In addition, experiments at a typical atmospheric CO2 concentration of 400 µL · L-1 have been performed.

2.
ACS Phys Chem Au ; 2(2): 79-88, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36855513

RESUMO

Hierarchical zeolites containing both micro- (<2 nm) and mesopores (2-50 nm) have gained increasing attention in recent years because they combine the intrinsic properties of conventional zeolites with enhanced mass transport rates due to the presence of mesopores. The structure of the hierarchical self-pillared pentasil (SPP) zeolite is of interest because all-silica SPP consists of orthogonally intergrown single-unit-cell MFI nanosheets and contains hydrophilic surface silanol groups on the mesopore surface while its micropores are nominally hydrophobic. Therefore, the distribution of adsorbed polar molecules, like water and ethanol, in the meso- and micropores is of fundamental interest. Here, molecular simulation and experiment are used to investigate the adsorption of water and ethanol on SPP. Vapor-phase single-component adsorption shows that water occupies preferentially the mesopore corner and surface regions of the SPP material at lower pressures (P/P 0 < 0.5) while loading in the mesopore interior dominates adsorption at higher pressures. In contrast, ethanol does not exhibit a marked preference for micro- or mesopores at low pressures. Liquid-phase adsorption from binary water-ethanol mixtures demonstrates a 2 orders of magnitude lower ethanol/water selectivity for the SPP material compared to bulk MFI. For very dilute aqueous solutions of ethanol, the ethanol molecules are mostly adsorbed inside the SPP micropore region due to stronger dispersion interactions and the competition from water for the surface silanols. At high ethanol concentrations (C EtOH > 700 g L-1), the SPP material becomes selective for water over ethanol.

3.
ACS Appl Mater Interfaces ; 13(18): 21740-21747, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33913321

RESUMO

New linkages for covalent organic frameworks (COFs) have been continuously pursued by chemists as they serve as the structure and property foundation for the materials. Developing new reaction types or modifying known linkages have been the only two methods to create new COF linkages. Herein, we report a novel strategy that uses H3PO3 as a bifunctional catalyst to achieve amine-linked COFs from readily available amine and aldehyde linkers. The acidic proton of H3PO3 catalyzes the imine framework formation, which is then in situ reduced to the amine COF by the reductive P-H moiety. The amine-linked COF outperforms its imine analogue in promoting Knoevenagel condensation because of the more basic sites and higher stability.

4.
J Res Natl Inst Stand Technol ; 126: 126047, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36475089

RESUMO

This paper reports the powder X-ray diffraction patterns, argon isotherms at 87 K, Brunauer-Emmett-Teller surface areas, pore size distributions, pore volumes, skeletal densities, and thermal gravimetric analyses for three National Institute of Standards and Technology zeolitic reference materials, RM 8850 (zeolite Y), RM 8851 (zeolite A), and RM 8852 (ZSM-5).

5.
Langmuir ; 35(6): 2115-2122, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30698443

RESUMO

Although helium pycnometry is generally the method of choice for skeletal density measurements of porous materials, few studies have provided a wide range of case studies that demonstrate how to best interpret raw data and perform measurements using it. The examination of several different classes of materials yielded signature traits from helium pycnometry data that are highlighted. Experimental parameters important in obtaining the most precise and accurate value of skeletal density from the helium pycnometer are as high as possible percent fill volume and good thermostability. The degree of sample activation is demonstrated to affect the measured skeletal density of porous zeolitic, carbon, and hybrid inorganic-organic materials. In the presence of a significant amount of physisorbed contaminants (water vapor, atmospheric gases, residual solvents, etc.), which was the case for ZSM-5, MIL-53, and F400, but not ZIF-8, the skeletal density tended to be overestimated in the low percent volume region. In addition, the kinetic data (i.e., skeletal density vs measurement cycle) reveals distinctive traits for a properly activated vs a nonactivated sample for all examined samples: activated samples with a significant amount of mass loss show a curved down plot that eventually reaches the equilibrium value, whereas nonactivated, nonporous, or extremely hydrophobic samples exhibit a flat line. This work illustrates how helium pycnometry can provide information about the structure of a material, and that, conversely, when  the structure of the material and its percent mass loss after activation (amount of physisorbed contaminants) are known, the behavior of activated and nonactivated samples in terms of skeletal density, percent fill volume, and measurement cycle can be predicted.

6.
AIChE J ; 662019.
Artigo em Inglês | MEDLINE | ID: mdl-33281192

RESUMO

In this work, batch-adsorption experiments and molecular simulations are employed to probe the adsorption of binary mixtures containing ethanol or a linear alkane-1,n-diol solvated in water or ethanol onto silicate-1. Since the batch-adsorption experiments require an additional relationship to determine the amount of solute (and solvent adsorbed, as only the bulk liquid reservoir can be probed directly, molecular simulations are used to provide a relationship between solute and solvent adsorption for input to the experimental bulk measurements. The combination of bulk experimental measurements and simulated solute-solvent relationship yields solvent and solute loadings that are self-consistent with simulation alone, and allow for an assessment of the various assumptions made in literature. At low solution concentrations, the solute loading calculated is independent of the assumption made. At high concentrations, a negligent choice of assumption can lead to systematic overestimation or underestimation of calculated solute loading.

7.
Artigo em Inglês | MEDLINE | ID: mdl-32165857

RESUMO

Many publications have been dedicated to the study of water vapour adsorption on the ordered silica-based material Santa Barbara Amorphous-15 (SBA-15). However, two aspects still need to be clarified: whether the solid is stable under repeated adsorption-desorption cycles and whether the experimental data can be predicted with a simple yet accurate analytical equilibrium model. In this study, SBA-15 showed good long-term structural stability when exposed to repeated adsorption-desorption cycles using water vapour as adsorptive up to 90 % relative humidity at 288 K, 298 K and 308 K. The reproducibility of the equilibrium isotherm was investigated using different commercial gravimetric instruments designed for water vapour adsorption measurements. The experimental measurements show a modification of the microporous structure of the solid after the first full isotherm measurement. Some water is strongly adsorbed and trapped during the first experiment on a fresh sample. After the first adsorption-desorption cycle, the water isotherm is characterized by a low value of the Henry law constant and by a nearly vertical capillary condensation and evaporation branches. Quite interestingly, the experimental scanning curves do not simply cross from one branch to the other as would be expected for cylindrical independent pores. The experimental data are correlated using new analytical models able to predict the amount adsorbed in the entire concentration range for the main adsorption-desorption branches and for the adsorption-desorption scanning curves.

8.
Meas Sci Technol ; 28(12)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29503511

RESUMO

Addressing reproducibility issues in adsorption measurements is critical to accelerating the path to discovery of new industrial adsorbents and to understanding adsorption processes. A National Institute of Standards and Technology Reference Material, RM 8852 (ammonium ZSM-5 zeolite), and two gravimetric instruments with asymmetric two-beam balances were used to measure high-pressure adsorption isotherms. This work demonstrates how common approaches to buoyancy correction, a key factor in obtaining the mass change due to surface excess gas uptake from the apparent mass change, can impact the adsorption isotherm data. Three different approaches to buoyancy correction were investigated and applied to the subcritical CO2 and supercritical N2 adsorption isotherms at 293 K. It was observed that measuring a collective volume for all balance components for the buoyancy correction (helium method) introduces an inherent bias in temperature partition when there is a temperature gradient (i.e. analysis temperature is not equal to instrument air bath temperature). We demonstrate that a blank subtraction is effective in mitigating the biases associated with temperature partitioning, instrument calibration, and the determined volumes of the balance components. In general, the manual and subtraction methods allow for better treatment of the temperature gradient during buoyancy correction. From the study, best practices specific to asymmetric two-beam balances and more general recommendations for measuring isotherms far from critical temperatures using gravimetric instruments are offered.

9.
Chem Sci ; 7(10): 6492-6498, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28451107

RESUMO

UiO-66 and analogues were successfully tailored to chemoselectively capture AsV oxyanions at the hydroxylated node and neutral AsIII species with the thiolated organic linkers. More efficient and faster uptake can be achieved with increasing defect densities, increasing pore aperture sizes, and decreasing particle sizes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA