Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 13: 1292635, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38074643

RESUMO

Introduction: Many well-known risk factors for breast cancer are associated with dysbiosis (an aberrant microbiome). However, how bacterial products modulate cancer are poorly understood. In this study, we investigated the effect of an exopolysaccharide (EPS) produced by the commensal bacterium Bacillus subtilis on breast cancer phenotypes. Although B. subtilis is commonly included in probiotic preparations and its EPS protects against inflammatory diseases, it was virtually unknown whether B. subtilis-derived EPS affects cancer. Methods: This work investigated effects of EPS on phenotypes of breast cancer cells as a cancer model. The phenotypes included proliferation, mammosphere formation, cell migration, and tumor growth in two immune compromised mouse models. RNA sequencing was performed on RNA from four breast cancer cells treated with PBS or EPS. IKKß or STAT1 signaling was assessed using pharmacologic or RNAi-mediated knock down approaches. Results: Short-term treatment with EPS inhibited proliferation of certain breast cancer cells (T47D, MDA-MB-468, HCC1428, MDA-MB-453) while having little effect on others (MCF-7, MDA-MB-231, BT549, ZR-75-30). EPS induced G1/G0 cell cycle arrest of T47D cells while increasing apoptosis of MDA-MB-468 cells. EPS also enhanced aggressive phenotypes in T47D cells including cell migration and cancer stem cell survival. Long-term treatment with EPS (months) led to resistance in vitro and promoted tumor growth in immunocompromised mice. RNA-sequence analysis showed that EPS increased expression of pro-inflammatory pathways including STAT1 and NF-κB. IKKß and/or STAT1 signaling was necessary for EPS to modulate phenotypes of EPS sensitive breast cancer cells. Discussion: These results demonstrate a multifaceted role for an EPS molecule secreted by the probiotic bacterium B. subtilis on breast cancer cell phenotypes. These results warrant future studies in immune competent mice and different cancer models to fully understand potential benefits and/or side effects of long-term use of probiotics.

2.
Oncotarget ; 7(47): 77291-77305, 2016 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-27764792

RESUMO

The receptor tyrosine kinase AXL promotes migration, invasion, and metastasis. Here, we evaluated the role of AXL in endometrial cancer. High immunohistochemical expression of AXL was found in 76% (63/83) of advanced-stage, and 77% (82/107) of high-grade specimens and correlated with worse survival in uterine serous cancer patients. In vitro, genetic silencing of AXL inhibited migration and invasion but had no effect on proliferation of ARK1 endometrial cancer cells. AXL-deficient cells showed significantly decreased expression of phospho-AKT as well as uPA, MMP-1, MMP-2, MMP-3, and MMP-9. In a xenograft model of human uterine serous carcinoma with AXL-deficient ARK1 cells, there was significantly less tumor burden than xenografts with control ARK1 cells. Together, these findings underscore the therapeutic potentials of AXL as a candidate target for treatment of metastatic endometrial cancer.


Assuntos
Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Proteínas da Matriz Extracelular/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias do Endométrio/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Gradação de Tumores , Invasividade Neoplásica , Transplante de Neoplasias , Fosforilação , Prognóstico , Transdução de Sinais , Análise de Sobrevida , Regulação para Cima , Receptor Tirosina Quinase Axl
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA