Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Geochem Health ; 46(8): 266, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954124

RESUMO

Recently, the hazardous effects of antibiotic micropollutants on the environment and human health have become a major concern. To address this challenge, semiconductor-based photocatalysis has emerged as a promising solution for environmental remediation. Our study has developed Bi2WO6/g-C3N4 (BWCN) photocatalyst with unique characteristics such as reactive surface sites, enhanced charge transfer efficiency, and accelerated separation of photogenerated electron-hole pairs. BWCN was utilized for the oxidation of tetracycline antibiotic (TCA) in different water sources. It displayed remarkable TCA removal efficiencies in the following order: surface water (99.8%) > sewage water (88.2%) > hospital water (80.7%). Further, reusability tests demonstrated sustained performance of BWCN after three cycles with removal efficiencies of 87.3, 71.2 and 65.9% in surface water, sewage, and hospital water, respectively. A proposed photocatalytic mechanism was delineated, focusing on the interaction between reactive radicals and TCA molecules. Besides, the transformation products generated during the photodegradation of TCA were determined, along with the discussion on the potential risk assessment of antibiotic pollutants. This study introduces an approach for utilizing BWCN photocatalyst, with promising applications in the treatment of TCA from various wastewater sources.


Assuntos
Antibacterianos , Oxirredução , Tetraciclina , Poluentes Químicos da Água , Poluentes Químicos da Água/química , Antibacterianos/química , Tetraciclina/química , Catálise , Águas Residuárias/química , Bismuto/química , Grafite/química , Compostos de Nitrogênio/química , Compostos de Tungstênio/química , Fotólise , Purificação da Água/métodos , Esgotos/química
2.
Environ Geochem Health ; 46(7): 219, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849667

RESUMO

This study investigates the removal of amoxicillin micropollutants (AM) from hospital wastewater using CoMoO4-modified graphitic carbon nitride (CMO/gCN). Consequently, CMO/gCN exhibits notable improvements in visible light absorption and electron-hole separation rates compared to unmodified gCN. Besides, CMO/gCN significantly enhances the removal efficiency of AM, attaining an impressive 96.5%, far surpassing the performance of gCN at 48.6%. Moreover, CMO/gCN showcases outstanding reusability, with AM degradation performance exceeding 70% even after undergoing six cycles of reuse. The removal mechanism of AM employing CMO/gCN involves various photoreactions of radicals (•OH, •O2-) and amoxicillin molecules under light assistance. Furthermore, CMO/gCN demonstrates a noteworthy photodegradation efficiency of AM from hospital wastewater, reaching 92.8%, with a near-complete reduction in total organic carbon levels. Detailed discussions on the practical applications of the CMO/gCN photocatalyst for removal of micropollutants from hospital wastewater are provided. These findings underline the considerable potential of CMO/gCN for effectively removing various pollutants in environmental remediation strategies.


Assuntos
Amoxicilina , Grafite , Oxirredução , Águas Residuárias , Poluentes Químicos da Água , Amoxicilina/química , Águas Residuárias/química , Grafite/química , Poluentes Químicos da Água/química , Fotólise , Hospitais , Compostos de Nitrogênio/química , Catálise , Purificação da Água/métodos
3.
Environ Geochem Health ; 46(3): 76, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38367100

RESUMO

The escalating global industrial expansion has led to the extensive release of organic compounds into water bodies, resulting in substantial pollution and posing severe threats to both human health and the ecosystem. Among common micropollutants, bisphenol A (MP-BA) has emerged as a significant endocrine-disrupting chemical with potential adverse effects on human health and the environment. This study aims to develop an efficient photocatalyst, specifically by incorporating palladium-doped graphitic carbon nitride (Pd@GCN), to eliminate MP-BA pollutants present in industrial wastewater. The examination of optical properties and photoluminescence indicates that incorporating Pd into GCN enhances the visible light absorption spectra, which extends beyond 570 nm, and accelerates the separation rate of electron-hole pairs. The photocatalytic degradation efficiency of MP-BA increases from 81.7 to 98.8% as the solution pH rises from 5.0 to 9.0. Moreover, Pd@GCN significantly improves the removal rate of MP-BA in wastewater samples, reaching an impressive 92.8% after 60 min of exposure to solar light. Furthermore, the Pd@GCN photocatalyst exhibits notable reusability over six cycles of MP-BA degradation, indicating its promising potential for the treatment of organic pollutants in wastewater under solar light conditions.


Assuntos
Poluentes Ambientais , Grafite , Compostos de Nitrogênio , Fenóis , Águas Residuárias , Humanos , Paládio , Ecossistema , Compostos Benzidrílicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA