Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(9): 11051-11067, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35199989

RESUMO

Angiogenic magnetic hydrogels are attractive for tissue engineering applications because their integrated properties can improve angiogenesis while providing magnetic guidance and stimulation for tissue healing. In this study, we synthesized magnetic nanoparticles (MNPs) with curcumin as an angiogenic agent, referred to as CMNPs, via a one-pot coprecipitation method. We dispersed CMNPs in hyaluronic acid (HyA) to create angiogenic magnetic hydrogels. CMNPs showed a slightly reduced average diameter compared to that of MNPs and a curcumin content of 11.91%. CMNPs exhibited a sustained slow release of curcumin when immersed in a revised simulated body fluid (rSBF). Both CMNPs and MNPs showed a dose-dependent cytocompatibility when cultured with bone marrow-derived mesenchymal stem cells (BMSCs) using the direct exposure culture method in vitro. The average BMSC density increased when the concentrations of CMNPs or MNPs increased from 100 to 500 µg/mL, but the cell density decreased when the nanoparticle concentration reached 1000 µg/mL. CMNPs showed a weaker magnetic response than MNPs both in air and in water immediately after synthesis but retained the magnetism better than MNPs when embedded in the HyA hydrogel because of less oxidation. CMNPs were able to respond to magnetic guidance even when the porcine skin or muscle tissues were placed in between the nanoparticles and external magnet. The magnetic hydrogels of HyA_CMNP and HyA_MNP promoted the adhesion of BMSCs in a direct exposure culture. The HyA_CMNP group also showed the highest secretion of the vascular endothelial growth factor with the release of curcumin in vitro. Overall, our magnetic hydrogels integrated the desirable properties of cytocompatibility and angiogenesis with magnetic guidance, thus proving to be promising for improving tissue regeneration.


Assuntos
Curcumina/química , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Nanopartículas de Magnetita/química , Cicatrização/efeitos dos fármacos , Indutores da Angiogênese/química , Indutores da Angiogênese/farmacologia , Animais , Materiais Biocompatíveis , Células Cultivadas , Curcumina/metabolismo , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Magnetismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Ratos Sprague-Dawley , Suínos , Fatores de Crescimento do Endotélio Vascular/metabolismo
2.
ACS Omega ; 5(38): 24613-24627, 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33015479

RESUMO

Magnesium (Mg) and its alloys have attracted increasing attention in recent years as medical implants for repairing musculoskeletal injuries because of their promising mechanical and biological properties. However, rapid degradation of Mg and its alloys in physiological fluids limited their clinical translation because the accumulation of hydrogen (H2) gas and fast release of OH- ions could adversely affect the healing process. Moreover, infection is a major concern for internally implanted devices because it could lead to biofilm formation, prevent host cell attachment on the implants, and interfere osseointegration, resulting in implant failure or other complications. Fabricating nanostructured magnesium oxide (MgO) on magnesium (Mg) substrates is promising in addressing both problems because it could slow down the degradation process and improve the antimicrobial activity. In this study, nanostructured MgO layers were created on Mg substrates using two different surface treatment techniques, i.e., anodization and electrophoretic deposition (EPD), and cultured with Staphylococcus aureus in vitro to determine their antimicrobial properties. At the end of the 24-h bacterial culture, the nanostructured MgO layers on Mg prepared by anodization or EPD both showed significant bactericidal effect against S. aureus. Thus, nanostructured MgO layers on Mg are promising for reducing implant-related infections and complications and should be further explored for clinical translation toward antimicrobial biodegradable implants.

3.
ACS Biomater Sci Eng ; 6(1): 517-538, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33463195

RESUMO

Magnesium-zinc-calcium (Mg-Zn-Ca) alloys have attracted increasing attention for biomedical implant applications, especially for bone repair, because of their biocompatibility, biodegradability, and similar mechanical properties to human bone. The objectives of this study were to characterize Mg-2 wt % Zn-0.5 wt % Ca (named ZC21) alloy pins microstructurally and mechanically, and determine their degradation and interactions with host cells and pathogenic bacteria in vitro and in vivo in comparison with the previously studied Mg-4 wt % Zn-1 wt % strontium (named ZSr41) alloy and Mg control. Specifically, the in vitro degradation and cytocompatibility of ZC21 pins with bone marrow derived mesenchymal stem cells (BMSCs) were investigated using both direct culture and direct exposure culture methods. The adhesion density of BMSCs on ZC21 pins (i.e., direct contact) was significantly higher than on pure Mg pins in both in vitro culture methods; the cell adhesion density around ZC21 pins (i.e., indirect contact) was similar to the cell-only positive control in both in vitro culture methods. Interestingly, ZC21 showed a higher daily degradation rate, crack width and crack area ratio in the direct exposure culture than in the direct culture, suggesting different culture methods did affect its in vitro degradation behaviors. When cultured with Gram-positive bacteria methicillin-resistant Staphylococcus aureus (MRSA), ZC21 reduced bacterial adhesion on the surface more significantly than that of ZSr41 and Mg. The in vivo degradation and biocompatibility of the ZC21 pins for bone regeneration were studied in a mouse femoral defect model. The in vivo degradation rate of ZC21 pins was much slower than that of ZSr41 alloy and Mg control pins. After 12 weeks of implantation in vivo, the ZC21 group showed the shortest gap at the femoral defect, indicating that ZC21 pins promoted osteogenesis and bone healing more than ZSr41 and Mg control pins. Overall, the ZC21 alloy is promising for bone repair, while providing antibacterial activities, and should be further studied toward clinical translation.


Assuntos
Implantes Absorvíveis , Staphylococcus aureus Resistente à Meticilina , Ligas , Antibacterianos , Zinco/farmacologia
4.
Sci Rep ; 8(1): 16260, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30389984

RESUMO

Magnesium oxide nanoparticle (nMgO) is a light metal based antimicrobial nanoparticle that can be metabolized and fully resorbed in the body. To take advantage of the antimicrobial properties of nMgO for medical use, it is necessary to determine the minimal inhibitory, bactericidal and fungicidal concentrations (MIC, MBC and MFC) of nMgO against prevalent infectious bacteria and yeasts. The objective of this study was to use consistent methods and conditions to reveal and directly compare the efficacy of nMgO against nine prevalent pathogenic microorganisms, including two gram-negative bacteria, three gram-positive bacteria with drug-resistant strains, and four yeasts with drug-resistant strains. The MIC of nMgO varied from 0.5 mg/mL to 1.2 mg/mL and the minimal lethal concentration (MLC) of nMgO at 90% killing varied from 0.7 mg/mL to 1.4 mg/mL against different pathogenic bacteria and yeasts. The most potent concentrations (MPC) of nMgO were 1.4 and/or 1.6 mg/mL, depending on the type of bacteria and yeasts tested. As the concentration of nMgO increased, the adhesion of bacteria and yeasts decreased. Moreover, S. epidermidis biofilm was disrupted at 1.6 mg/mL of nMgO. E. coli and some yeasts showed membrane damage after cultured with ≥0.5 mg/mL nMgO. Overall, nMgO killed both planktonic bacteria and disrupted nascent biofilms, suggesting new antimicrobial mechanisms of nMgO. Production of reactive oxygen species (ROS), Ca2+ ion concentrations, and quorum sensing likely contribute to the action mechanisms of nMgO against planktonic bacteria, but transient alkaline pH of 7 to 10 or increased Mg2+ ion concentrations from 1 to 50 mM showed no inhibitory or killing effects on bacteria such as S. epidermidis. Further studies are needed to determine if specific concentrations of nMgO at MIC, MLC or MPC level can be integrated into medical devices to evoke desired antimicrobial responses without harming host cells.


Assuntos
Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Óxido de Magnésio/farmacologia , Nanopartículas Metálicas , Leveduras/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Relação Dose-Resposta a Droga , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Leveduras/fisiologia
5.
Acta Biomater ; 35: 341-56, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26923529

RESUMO

This article reports the quantitative relationship between the concentration of magnesium oxide (MgO) nanoparticles and its distinct biological activities towards mammalian cells and infectious bacteria for the first time. The effects of MgO nanoparticles on the viability of bone marrow derived mesenchymal stem cells (BMSCs) and infectious bacteria (both gram-negative Escherichia coli and gram-positive Staphylococcus epidermidis) showed a concentration-dependent behavior in vitro. The critical concentrations of MgO nanoparticles identified in this study provided valuable guidelines for biomaterial design toward potential clinical translation. BMSCs density increased significantly when cultured in 200µg/mL of MgO in comparison to the Cells Only control without MgO. The density of BMSCs decreased significantly after culture in the media with 500µg/mL or more of MgO. Concentrations at or above 1000µg/mL of MgO resulted in complete BMSCs death. Quantification of colony forming units (CFU) revealed that the minimum bactericidal concentration (MBC) of MgO for E. coli and S. epidermidis was 1200µg/mL. The addition of MgO nanoparticles into the cultures increased the pH and Mg(2+) ion concentration in the respective culture media, which might have played a role in the observed cell responses but not the main factors. E. coli and S. epidermidis still proliferated significantly at alkaline pH up to 10 or with supplemental Mg(2+) dosages up to 50mM, indicating bactericidal properties of MgO are beyond the effects of increased media pH and Mg(2+) ion concentrations. MgO nanoparticles at a concentration of 200µg/mL provided dual benefits of promoting BMSC proliferation while reducing bacterial adhesion, which should be further studied for potential medical implant applications. The use of free MgO nanoparticles yielded detrimental effects to BMSCs in concentrations above 300µg/mL. We recommend further study into MgO nanoparticle as a coating material or as a part of a composite. STATEMENT OF SIGNIFICANCE: This article reports the quantitative relationship between the concentration of magnesium oxide (MgO) nanoparticles and its distinct biological activities towards mammalian cells and infectious bacteria for the first time. The effects of MgO nanoparticles on the viability of bone marrow derived mesenchymal stem cells (BMSCs) and infectious bacteria (both gram-negative Escherichia coli and gram-positive Staphylococcus epidermidis) showed a concentration-dependent behavior in vitro. The critical concentrations of MgO nanoparticles identified in this study provided valuable guidelines for biomaterial design toward potential clinical translation.


Assuntos
Células da Medula Óssea/citologia , Óxido de Magnésio/farmacologia , Células-Tronco Mesenquimais/citologia , Nanopartículas/química , Animais , Aderência Bacteriana/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Contagem de Colônia Microbiana , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/ultraestrutura , Concentração de Íons de Hidrogênio , Íons , Células-Tronco Mesenquimais/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Microscopia de Fluorescência , Nanopartículas/ultraestrutura , Ratos Sprague-Dawley , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/crescimento & desenvolvimento , Staphylococcus epidermidis/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA