Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(11): 19076-19087, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38859051

RESUMO

We present a method for achieving hyperspectral magnetic imaging in the extreme ultraviolet (EUV) region based on high-harmonic generation (HHG). By interfering two mutually coherent orthogonally-polarized and laterally-sheared HHG sources, we create an EUV illumination beam with spatially-dependent ellipticity. By placing a magnetic sample in the beamline and sweeping the relative time delay between the two sources, we record a spatially resolved interferogram that is sensitive to the EUV magnetic circular dichroism of the sample. This image contains the spatially-resolved magneto-optical response of the sample at each harmonic order, and can be used to measure the magnetic properties of spatially inhomogeneous magnetic samples.

2.
Phys Rev Lett ; 131(8): 085101, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37683150

RESUMO

Warm dense matter (WDM) represents a highly excited state that lies at the intersection of solids, plasmas, and liquids and that cannot be described by equilibrium theories. The transient nature of this state when created in a laboratory, as well as the difficulties in probing the strongly coupled interactions between the electrons and the ions, make it challenging to develop a complete understanding of matter in this regime. In this work, by exciting isolated ∼8 nm copper nanoparticles with a femtosecond laser below the ablation threshold, we create uniformly excited WDM. Using photoelectron spectroscopy, we measure the instantaneous electron temperature and extract the electron-ion coupling of the nanoparticle as it undergoes a solid-to-WDM phase transition. By comparing with state-of-the-art theories, we confirm that the superheated nanoparticles lie at the boundary between hot solids and plasmas, with associated strong electron-ion coupling. This is evidenced both by a fast energy loss of electrons to ions, and a strong modulation of the electron temperature induced by strong acoustic breathing modes that change the nanoparticle volume. This work demonstrates a new route for experimental exploration of the exotic properties of WDM.

3.
Nat Mater ; 22(4): 429-433, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36894771

RESUMO

The lowest-lying fundamental excitation of an incommensurate charge-density-wave material is believed to be a massless phason-a collective modulation of the phase of the charge-density-wave order parameter. However, long-range Coulomb interactions should push the phason energy up to the plasma energy of the charge-density-wave condensate, resulting in a massive phason and fully gapped spectrum1. Using time-domain terahertz emission spectroscopy, we investigate this issue in (TaSe4)2I, a quasi-one-dimensional charge-density-wave insulator. On transient photoexcitation at low temperatures, we find the material strikingly emits coherent, narrowband terahertz radiation. The frequency, polarization and temperature dependences of the emitted radiation imply the existence of a phason that acquires mass by coupling to long-range Coulomb interactions. Our observations underscore the role of long-range interactions in determining the nature of collective excitations in materials with modulated charge or spin order.

4.
Opt Express ; 30(17): 30331-30346, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36242139

RESUMO

We demonstrate temporally multiplexed multibeam ptychography implemented for the first time in the EUV, by using a high harmonic based light source. This allows for simultaneous imaging of different sample areas, or of the same area at different times or incidence angles. Furthermore, we show that this technique is compatible with wavelength multiplexing for multibeam spectroscopic imaging, taking full advantage of the temporal and spectral characteristics of high harmonic light sources. This technique enables increased data throughput using a simple experimental implementation and with high photon efficiency.

5.
Sci Adv ; 8(5): eabj7380, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35119926

RESUMO

The extreme nonlinear optical process of high-harmonic generation (HHG) makes it possible to map the properties of a laser beam onto a radiating electron wave function and, in turn, onto the emitted x-ray light. Bright HHG beams typically emerge from a longitudinal phased distribution of atomic-scale quantum antennae. Here, we form a transverse necklace-shaped phased array of linearly polarized HHG emitters, where orbital angular momentum conservation allows us to tune the line spacing and divergence properties of extreme ultraviolet and soft x-ray high-harmonic combs. The on-axis HHG emission has extremely low divergence, well below that obtained when using Gaussian driving beams, which further decreases with harmonic order. This work provides a new degree of freedom for the design of harmonic combs-particularly in the soft x-ray regime, where very limited options are available. Such harmonic beams can enable more sensitive probes of the fastest correlated charge and spin dynamics in molecules, nanoparticles, and materials.

6.
Opt Express ; 29(23): 38119-38128, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34808871

RESUMO

High-harmonic generation (HHG) is a unique tabletop light source with femtosecond-to-attosecond pulse duration and tailorable polarization and beam shape. Here, we use counter-rotating femtosecond laser pulses of 0.8 µm and 2.0 µm to extend the photon energy range of circularly polarized high-harmonics and also generate single-helicity HHG spectra. By driving HHG in helium, we produce circularly polarized soft x-ray harmonics beyond 170 eV-the highest photon energy of circularly polarized HHG achieved to date. In an Ar medium, dense spectra at photon energies well beyond the Cooper minimum are generated, with regions composed of a single helicity-consistent with the generation of a train of circularly polarized attosecond pulses. Finally, we show theoretically that circularly polarized HHG photon energies can extend beyond the carbon K edge, extending the range of molecular and materials systems that can be accessed using dynamic HHG chiral spectro-microscopies.

7.
Phys Chem Chem Phys ; 22(21): 11838-11849, 2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32426777

RESUMO

Recent observations of chloromethane in interstellar environments suggest that other organohalogens, which are known to be critically important in Earth's atmosphere, may also be of significance beyond our own terrestrial veil. This raises the question of how such molecules behave under extreme conditions such as when exposed to vacuum ultraviolet (VUV) radiation. VUV photons promote molecules to highly excited states that fragment in non-statistical patterns controlled by the initial femtosecond dynamics. A detailed understanding of VUV-driven photochemistry in complex organic molecules that consist of more than one functional group is a particularly challenging task. This quantum chemical analysis reports the electronic states and ionization potentials up to the VUV range (6-11 eV) of the chlorine-substituted cumulenone series molecules. The valence and Rydberg properties of lone-pair terminated, π-conjugated systems are explored for their potential resonance with lone pairs from elsewhere in the system. The carbon chain elongation within the family ClHCnO, where n = 1-4, influences the electronic excitations, associated wavefunctions, and ionization potentials of the molecules. The predicted geometries and ionization potentials are in good agreement with the available experimental photoelectron spectra for formyl chloride and chloroketene, n = 1-2. Furthermore, comparison between the regular cumulenone species and the corresponding chlorinated derivatives exhibit similar behaviors especially for n = 3, where the allene backbone in propadienone chloride is severely bent. Most notably for the excited states is that the Rydberg character becomes more dominant as the energy increases, with some retaining valence characters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA