Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Microencapsul ; 40(8): 613-629, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37815151

RESUMO

This study aims to evaluate the radioprotective effects of liposomes encapsulating curcumin (Lip-CUR), silibinin (Lip-SIL), α-tocopherol (Lip-TOC), quercetin (Lip-QUE) and resveratrol (Lip-RES) in alleviating the adverse effects of ionising irradiation on human lymphoctyes and skin cells in radiotherapy. Liposomes encapsulating the above natural radioprotectants (Lip-NRPs) were prepared by the film hydration method combined with sonication. Their radioprotective effects for the cells against X-irradiation was evaluated using trypan-blue assay and γ-H2AX assay. All prepared Lip-NRPs had a mean diameter less than 240 nm, polydispersity index less than 0.32, and zeta potential more than -23 mV. Among them, the radioprotective effect of Lip-RES was lowest, while that of Lip-QUE was highest. Lip-SIL also exhibited a high radioprotective effect despite its low DPPH-radical scavenging activity (12.9%). The radioprotective effects of Lip-NRPs do not solely depend on the free radical scavenging activity of NRPs but also on their ability to activate cellular mechanisms.


Assuntos
Curcumina , Lipossomos , Humanos , Resveratrol , Pele , Curcumina/farmacologia , Linfócitos
2.
J Microencapsul ; 36(2): 156-168, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31030591

RESUMO

This study aimed to compare the in vivo effectiveness between curcumin-oligochitosan nanoplexes (CUR-OCH nanoplexes) and oligochitosan-coated curcumin-encapsulated liposomes (OCH-Lip-CUR) with respect to wound healing and scar treatment. Firstly, CUR-OCH nanoplexes was prepared by drug-polysaccharide complexation method and OCH-Lip-CUR was prepared by a combining method of lipid-film hydration and sonication. Their in vitro cytotoxicity and in vivo wound healing and scar treatment effectiveness were evaluated using 3T3 cells and mice Mus musculus var. Albino, respectively. The resutls indicated that both of them were in nanosize with a moderate PDI (less than 0.3), and exhibited negligible cytotoxicity at low CUR concentration (0.01 mg/mL). Moreover, their application onto wounds resulted in faster healing and higher scar treatment effectiveness than control samples. Interestingly, OCH-Lip-CUR exhibited higher in vivo effectiveness than CUR-OCH nanoplexes. However, based on their own advantages, both of them were good candidates for a commercial formulation for wound healing and scar treatment.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Cicatriz/tratamento farmacológico , Curcumina/administração & dosagem , Cicatrização/efeitos dos fármacos , Células 3T3 , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/uso terapêutico , Quitina/análogos & derivados , Quitina/química , Quitosana , Curcumina/análogos & derivados , Curcumina/uso terapêutico , Liberação Controlada de Fármacos , Lipossomos/química , Masculino , Camundongos , Nanoconjugados/química , Oligossacarídeos
3.
Mater Sci Eng C Mater Biol Appl ; 98: 54-64, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30813056

RESUMO

While the wound healing activity of curcumin (CUR) has been well-established, its clinical effectiveness remains limited due to the inherently low aqueous CUR solubility, resulting in suboptimal CUR exposure in the wound sites. Previously, we developed high-payload amorphous nanoparticle complex (or nanoplex) of CUR and chitosan (CHI) capable of CUR solubility enhancement by drug-polyelectrolyte complexation. The CUR-CHI nanoplex, however, exhibited poor colloidal stability due to its strong agglomeration tendency. Herein we hypothesized that the colloidal stability could be improved by replacing CHI with its oligomers (OCHI) owed to the better charge distribution in OCHI. The effects of key parameters in drug-polyelectrolyte complexation (i.e. pH, salt inclusion, CUR concentration, and OCHI/CUR charge ratio) on the physical characteristics and preparation efficiency of the CUR-OCHI nanoplex produced were investigated. The in vivo wound healing efficacy of the CUR-OCHI nanoplex and its cytotoxicity towards human keratinocytes cells were examined. The results showed that CUR-OCHI nanoplex exhibited prolonged colloidal stability (72 h versus <24 h for the CUR-CHI nanoplex). At the optimal condition, the CUR-OCHI nanoplex (without ultrasonication) exhibited size, zeta potential, and CUR payload of ≈140 nm, 20 mV, and 78% (w/w), respectively. The nanoplex preparation was simple yet robust at nearly 100% CUR utilization rate. The CUR-OCHI nanoplex exhibited superior wound healing efficacy to the native CUR with wound closure of >90% after 7 days versus 9 days for the native CUR resulting in smaller scars, attributed to its generation of high CUR concentration in the wound sites.


Assuntos
Quitina/análogos & derivados , Quitosana/química , Curcumina/química , Curcumina/farmacologia , Nanopartículas/química , Células Cultivadas , Quitina/química , Portadores de Fármacos/química , Humanos , Queratinócitos/efeitos dos fármacos , Oligossacarídeos , Cicatrização/efeitos dos fármacos
4.
Int J Radiat Biol ; 93(11): 1267-1273, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28903625

RESUMO

PURPOSE: While the radioprotective activity of curcumin against genotoxicity has been well established, its poor oral bioavailability has limited its successful clinical applications. Nanoscale formulations, including liposomes, have been demonstrated to improve curcumin bioavailability. The objective of the present work was (1) to prepare and characterize curcumin-encapsulated liposomes (i.e. size, colloidal stability, encapsulation efficiency, and payload), and (2) subsequently to evaluate their radioprotective activity against genotoxicity in human blood cells caused by Gamma Cobalt-60 irradiation. MATERIALS AND METHODS: The curcumin-encapsulated liposomes were prepared by lipid-film hydration method using commercial phosphatidylcholine (i.e. Phospholipon® 90G). The blood cells were obtained from healthy male donors (n = 3) under an approved ethics protocol. The cell uptake and the radioprotective activity of the curcumin-encapsulated liposomes were characterized by fluorescence microscopy and micronucleus assay, respectively. RESULTS: Nanoscale curcumin-encapsulated liposomes exhibiting good physical characteristics and successful uptake by the human blood cells were successfully prepared. The radioprotective activity of the curcumin-encapsulated liposomes was found to be dependent on the curcumin concentration, where an optimal concentration existed (i.e. 30 µg/mL) independent of the irradiation dose, above which the radioprotective activity had become stagnant (i.e. no more reduction in the micronuclei frequency). CONCLUSIONS: The present results established for the first time the radioprotective activity of curcumin-encapsulated liposomes in human blood cells, which coupled by its well-established bioavailability, boded well for its potential application as a nanoscale delivery system of other radioprotective phytochemicals.


Assuntos
Células Sanguíneas/efeitos dos fármacos , Células Sanguíneas/efeitos da radiação , Radioisótopos de Cobalto/efeitos adversos , Curcumina/administração & dosagem , Curcumina/farmacologia , Raios gama/efeitos adversos , Transporte Biológico , Células Sanguíneas/metabolismo , Cápsulas , Curcumina/metabolismo , Relação Dose-Resposta a Droga , Humanos , Lipossomos , Masculino , Protetores contra Radiação/administração & dosagem , Protetores contra Radiação/metabolismo , Protetores contra Radiação/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA