RESUMO
BACKGROUND: Human genetic studies have identified several mitochondrial amidoxime-reducing component 1 (MTARC1) variants as protective against metabolic dysfunction-associated steatotic liver disease. The MTARC1 variants are associated with decreased plasma lipids and liver enzymes and reduced liver-related mortality. However, the role of mARC1 in fatty liver disease is still unclear. METHODS: Given that mARC1 is mainly expressed in hepatocytes, we developed an N-acetylgalactosamine-conjugated mouse Mtarc1 siRNA, applying it in multiple in vivo models to investigate the role of mARC1 using multiomic techniques. RESULTS: In ob/ob mice, knockdown of Mtarc1 in mouse hepatocytes resulted in decreased serum liver enzymes, LDL-cholesterol, and liver triglycerides. Reduction of mARC1 also reduced liver weight, improved lipid profiles, and attenuated liver pathological changes in 2 diet-induced metabolic dysfunction-associated steatohepatitis mouse models. A comprehensive analysis of mARC1-deficient liver from a metabolic dysfunction-associated steatohepatitis mouse model by metabolomics, proteomics, and lipidomics showed that Mtarc1 knockdown partially restored metabolites and lipids altered by diet. CONCLUSIONS: Taken together, reducing mARC1 expression in hepatocytes protects against metabolic dysfunction-associated steatohepatitis in multiple murine models, suggesting a potential therapeutic approach for this chronic liver disease.
Assuntos
Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Hepatócitos , Animais , Camundongos , Hepatócitos/metabolismo , Fígado/metabolismo , Masculino , RNA Interferente Pequeno/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Camundongos Endogâmicos C57BLRESUMO
The efficacy of current antimitotic cancer drugs is limited by toxicity in highly proliferative healthy tissues. A cancer-specific dependency on the microtubule motor protein KIF18A therefore makes it an attractive therapeutic target. Not all cancers require KIF18A, however, and the determinants underlying this distinction remain unclear. Here, we show that KIF18A inhibition drives a modest and widespread increase in spindle assembly checkpoint (SAC) signaling from kinetochores which can result in lethal mitotic delays. Whether cells arrest in mitosis depends on the robustness of the metaphase-to-anaphase transition, and cells predisposed with weak basal anaphase-promoting complex/cyclosome (APC/C) activity and/or persistent SAC signaling through metaphase are uniquely sensitive to KIF18A inhibition. KIF18A-dependent cancer cells exhibit hallmarks of this SAC:APC/C imbalance, including a long metaphase-to-anaphase transition, and slow mitosis overall. Together, our data reveal vulnerabilities in the cell division apparatus of cancer cells that can be exploited for therapeutic benefit.
Assuntos
Ciclossomo-Complexo Promotor de Anáfase , Neoplasias , Humanos , Ciclossomo-Complexo Promotor de Anáfase/genética , Dineínas , Cinesinas/genética , Cinetocoros , Mitose , Neoplasias/genéticaRESUMO
Hepatitis C virus (HCV) is the leading cause of death from liver disease. How HCV infection causes lasting liver damage and increases cancer risk remains unclear. Here, we identify bipotent liver stem cells as novel targets for HCV infection, and their erroneous differentiation as the potential cause of impaired liver regeneration and cancer development. We show 3D organoids generated from liver stem cells from actively HCV-infected individuals carry replicating virus and maintain low-grade infection over months. Organoids can be infected with a primary HCV isolate. Virus-inclusive single-cell RNA sequencing uncovered transcriptional reprogramming in HCV+ cells supporting hepatocytic differentiation, cancer stem cell development, and viral replication while stem cell proliferation and interferon signaling are disrupted. Our data add a new pathogenesis mechanism-infection of liver stem cells-to the biology of HCV infection that may explain progressive liver damage and enhanced cancer risk through an altered stem cell state.ImportanceThe hepatitis C virus (HCV) causes liver disease, affecting millions. Even though we have effective antivirals that cure HCV, they cannot stop terminal liver disease. We used an adult stem cell-derived liver organoid system to understand how HCV infection leads to the progression of terminal liver disease. Here, we show that HCV maintains low-grade infections in liver organoids for the first time. HCV infection in liver organoids leads to transcriptional reprogramming causing cancer cell development and altered immune response. Our finding shows how HCV infection in liver organoids mimics HCV infection and patient pathogenesis. These results reveal that HCV infection in liver organoids contributes to liver disease progression.
RESUMO
Influenza A Virus (IAV) is a recurring respiratory virus with limited availability of antiviral therapies. Understanding host proteins essential for IAV infection can identify targets for alternative host-directed therapies (HDTs). Using affinity purification-mass spectrometry and global phosphoproteomic and protein abundance analyses using three IAV strains (pH1N1, H3N2, H5N1) in three human cell types (A549, NHBE, THP-1), we map 332 IAV-human protein-protein interactions and identify 13 IAV-modulated kinases. Whole exome sequencing of patients who experienced severe influenza reveals several genes, including scaffold protein AHNAK, with predicted loss-of-function variants that are also identified in our proteomic analyses. Of our identified host factors, 54 significantly alter IAV infection upon siRNA knockdown, and two factors, AHNAK and coatomer subunit COPB1, are also essential for productive infection by SARS-CoV-2. Finally, 16 compounds targeting our identified host factors suppress IAV replication, with two targeting CDK2 and FLT3 showing pan-antiviral activity across influenza and coronavirus families. This study provides a comprehensive network model of IAV infection in human cells, identifying functional host targets for pan-viral HDT.
Assuntos
COVID-19 , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Humana , Humanos , Vírus da Influenza A/genética , Influenza Humana/genética , Virus da Influenza A Subtipo H5N1/genética , Vírus da Influenza A Subtipo H3N2/metabolismo , Proteômica , Replicação Viral/genética , SARS-CoV-2 , Antivirais/metabolismo , Interações Hospedeiro-Patógeno/genéticaRESUMO
Zika virus (ZIKV) infects fetal neural progenitor cells (NPCs) causing severe neurodevelopmental disorders in utero. Multiple pathways involved in normal brain development are dysfunctional in infected NPCs but how ZIKV centrally reprograms these pathways remains unknown. Here we show that ZIKV infection disrupts subcellular partitioning of host transcripts critical for neurodevelopment in NPCs and functionally link this process to the up-frameshift protein 1 (UPF1). UPF1 is an RNA-binding protein known to regulate decay of cellular and viral RNAs and is less expressed in ZIKV-infected cells. Using infrared crosslinking immunoprecipitation and RNA sequencing (irCLIP-Seq), we show that a subset of mRNAs loses UPF1 binding in ZIKV-infected NPCs, consistent with UPF1's diminished expression. UPF1 target transcripts, however, are not altered in abundance but in subcellular localization, with mRNAs accumulating in the nucleus of infected or UPF1 knockdown cells. This leads to diminished protein expression of FREM2, a protein required for maintenance of NPC identity. Our results newly link UPF1 to the regulation of mRNA transport in NPCs, a process perturbed during ZIKV infection.
Assuntos
Células-Tronco Neurais , Infecção por Zika virus , Zika virus , Humanos , Encéfalo/metabolismo , Encéfalo/virologia , Células-Tronco Neurais/virologia , RNA Helicases/genética , RNA Helicases/metabolismo , Transativadores/metabolismo , Replicação Viral , Zika virus/fisiologia , Infecção por Zika virus/genéticaRESUMO
Human Immunodeficiency Virus (HIV) relies on host molecular machinery for replication. Systematic attempts to genetically or biochemically define these host factors have yielded hundreds of candidates, but few have been functionally validated in primary cells. Here, we target 426 genes previously implicated in the HIV lifecycle through protein interaction studies for CRISPR-Cas9-mediated knock-out in primary human CD4+ T cells in order to systematically assess their functional roles in HIV replication. We achieve efficient knockout (>50% of alleles) in 364 of the targeted genes and identify 86 candidate host factors that alter HIV infection. 47 of these factors validate by multiplex gene editing in independent donors, including 23 factors with restrictive activity. Both gene editing efficiencies and HIV-1 phenotypes are highly concordant among independent donors. Importantly, over half of these factors have not been previously described to play a functional role in HIV replication, providing numerous novel avenues for understanding HIV biology. These data further suggest that host-pathogen protein-protein interaction datasets offer an enriched source of candidates for functional host factor discovery and provide an improved understanding of the mechanics of HIV replication in primary T cells.
Assuntos
Infecções por HIV , HIV-1 , Linfócitos T CD4-Positivos/metabolismo , Edição de Genes , HIV-1/genética , Interações entre Hospedeiro e Microrganismos/genética , HumanosRESUMO
The fate of influenza A virus (IAV) infection in the host cell depends on the balance between cellular defence mechanisms and viral evasion strategies. To illuminate the landscape of IAV cellular restriction, we generated and integrated global genetic loss-of-function screens with transcriptomics and proteomics data. Our multi-omics analysis revealed a subset of both IFN-dependent and independent cellular defence mechanisms that inhibit IAV replication. Amongst these, the autophagy regulator TBC1 domain family member 5 (TBC1D5), which binds Rab7 to enable fusion of autophagosomes and lysosomes, was found to control IAV replication in vitro and in vivo and to promote lysosomal targeting of IAV M2 protein. Notably, IAV M2 was observed to abrogate TBC1D5-Rab7 binding through a physical interaction with TBC1D5 via its cytoplasmic tail. Our results provide evidence for the molecular mechanism utilised by IAV M2 protein to escape lysosomal degradation and traffic to the cell membrane, where it supports IAV budding and growth.
Assuntos
Autofagia , Evasão da Resposta Imune , Vírus da Influenza A/fisiologia , Antivirais/metabolismo , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Vírus da Influenza A/patogenicidade , Lisossomos/metabolismo , Ligação Proteica , Proteínas da Matriz Viral/metabolismo , Replicação Viral , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7RESUMO
In search of more efficacious and safe pharmacological treatments for atrial fibrillation (AF), atria-selective antiarrhythmic agents have been promoted that target ion channels principally expressed in the atria. This concept allows one to engage antiarrhythmic effects in atria, but spares the ventricles from potentially proarrhythmic side effects. It has been suggested that cardiac small conductance Ca2+-activated K+ (SK) channels may represent an atria-selective target in mammals including humans. However, there are conflicting data concerning the expression of SK channels in different stages of AF, and recent findings suggest that SK channels are upregulated in ventricular myocardium when patients develop heart failure. To address this issue, RNA-sequencing was performed to compare expression levels of three SK channels (KCNN1, KCNN2, and KCNN3) in human atrial and ventricular tissue samples from transplant donor hearts (no cardiac disease), and patients with cardiac disease in sinus rhythm or with AF. In addition, for control purposes expression levels of several genes known to be either chamber-selective or differentially expressed in AF and heart failure were determined. In atria, as compared to ventricle from transplant donor hearts, we confirmed higher expression of KCNN1 and KCNA5, and lower expression of KCNJ2, whereas KCNN2 and KCNN3 were statistically not differentially expressed. Overall expression of KCNN1 was low compared to KCNN2 and KCNN3. Comparing atrial tissue from patients with AF to sinus rhythm samples we saw downregulation of KCNN2 in AF, as previously reported. When comparing ventricular tissue from heart failure patients to non-diseased samples, we found significantly increased ventricular expression of KCNN3 in heart failure, as previously published. The other channels showed no significant difference in expression in either disease. Our results add weight to the view that SK channels are not likely to be an atria-selective target, especially in failing human hearts, and modulators of these channels may prove to have less utility in treating AF than hoped. Whether targeting SK1 holds potential remains to be elucidated.
RESUMO
The PRKAG2 syndrome is a rare autosomal dominant phenocopy of sarcomeric hypertrophic cardiomyopathy (HCM), characterized by ventricular pre-excitation, progressive conduction system disease and left ventricular hypertrophy. This study describes the phenotype, genotype and clinical outcomes of a South-Asian PRKAG2 cardiomyopathy cohort over a 7-year period. Clinical, electrocardiographic, echocardiographic, and cardiac MRI data from 22 individuals with PRKAG2 variants (68% men; mean age 39.5 ± 18.1 years), identified at our HCM centre were studied prospectively. At initial evaluation, all of the patients were in NYHA functional class I or II. The maximum left ventricular wall thickness was 22.9 ± 8.7 mm and left ventricular ejection fraction was 53.4 ± 6.6%. Left ventricular hypertrophy was present in 19 individuals (86%) at baseline. 17 patients had an WPW pattern (77%). After a mean follow-up period of 7 years, 2 patients had undergone accessory pathway ablation, 8 patients (36%) underwent permanent pacemaker implantation (atrio-ventricular blocks-5; sinus node disease-2), 3 patients developed atrial fibrillation, 11 patients (50%) developed progressive worsening in NYHA functional class, and 6 patients (27%) experienced sudden cardiac death or equivalent. PRKAG2 cardiomyopathy must be considered in patients with HCM and progressive conduction system disease.
Assuntos
Proteínas Quinases Ativadas por AMP/genética , Povo Asiático/genética , Cardiomiopatias/genética , Adolescente , Adulto , Fibrilação Atrial/genética , Criança , Estudos de Coortes , Morte Súbita Cardíaca , Ecocardiografia/métodos , Eletrocardiografia/métodos , Feminino , Variação Genética/genética , Humanos , Hipertrofia Ventricular Esquerda/genética , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Função Ventricular Esquerda/genética , Adulto JovemRESUMO
Science still does not have the ability to accurately predict the affinity that ligands have for proteins. In an attempt to address this, the Statistical Assessment of Modeling of Proteins and Ligands (SAMPL) series of blind predictive challenges is a community-wide exercise aimed at advancing computational techniques as standard predictive tools in rational drug design. In each cycle, a range of biologically relevant systems of different levels of complexity are selected to test the latest modeling methods. As part of this on-going exercise, and as a step towards understanding the important factors in context dependent guest binding, we challenged the computational community to determine the affinity of a series of negatively and positively charged guests to two constitutionally isomeric cavitand hosts: octa-acid 1, and exo-octa acid 2. Our affinity determinations, combined with molecular dynamics simulations, reveal asymmetries in affinities between host-guest pairs that cannot alone be explained by simple coulombic interactions, but also point to the importance of host-water interactions. Our work reveals the key facets of molecular recognition in water, emphasizes where improvements need to be made in modelling, and shed light on the complex problem of ligand-protein binding in the aqueous realm.
RESUMO
Say-Meyer syndrome is a rare and clinically heterogeneous syndrome characterized by trigonocephaly, short stature, developmental delay and hypotelorism. Nine patients with this syndrome have been reported thus far although no causative gene has yet been identified. Here, we report two siblings with clinical phenotypes of Say-Meyer syndrome with moderate to severe intellectual disability and autism spectrum disorder. Cytogenetics and array-based comparative genomic hybridization did not reveal any chromosome abnormalities or copy number alterations. Exome sequencing of the patients revealed a novel X-linked recessive splice acceptor site variant c.145-2Aâ¯>â¯G in intron 5 of HUWE1 gene in both affected siblings. RT-PCR and sequencing revealed the use of an alternate cryptic splice acceptor site downstream, which led to deletion of six nucleotides resulting loss of two amino acids p.(Cys49-Glu50del) in HUWE1 protein. Deletion of these two amino acids, which are located in a highly conserved region, is predicted to be deleterious and quite likely to affect the function of HUWE1 protein. This is the first report of a potential candidate gene mutation for Say-Meyer syndrome, which was initially described four decades ago.
Assuntos
Anormalidades Múltiplas/genética , Transtorno do Espectro Autista/genética , Anormalidades Craniofaciais/genética , Transtornos do Crescimento/genética , Deficiência Intelectual/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética , Anormalidades Múltiplas/patologia , Adolescente , Transtorno do Espectro Autista/patologia , Criança , Pré-Escolar , Hibridização Genômica Comparativa , Suturas Cranianas/diagnóstico por imagem , Suturas Cranianas/patologia , Anormalidades Craniofaciais/patologia , Exoma/genética , Feminino , Transtornos do Crescimento/patologia , Humanos , Deficiência Intelectual/patologia , Masculino , Isoformas de Proteínas/genética , Sítios de Splice de RNA/genética , Sequenciamento do ExomaRESUMO
BACKGROUND: PIK3CA mutations are frequent in human breast cancer. Pik3caH1047R mutant expression in mouse mammary gland promotes tumorigenesis. TP53 mutations co-occur with PIK3CA mutations in human breast cancers. We previously generated a conditionally activatable Pik3caH1047R;MMTV-Cre mouse model and found a few malignant sarcomatoid (spindle cell) carcinomas that had acquired spontaneous dominant-negative Trp53 mutations. METHODS: A Pik3caH1047R;Trp53R270H;MMTV-Cre double mutant mouse breast cancer model was generated. Tumors were characterized by histology, marker analysis, transcriptional profiling, single-cell RNA-seq, and bioinformatics. Cell lines were developed from mutant tumors and used to identify and confirm genes involved in metastasis. RESULTS: We found Pik3caH1047R and Trp53R270H cooperate in driving oncogenesis in mammary glands leading to a shorter latency than either alone. Double mutant mice develop multiple histologically distinct mammary tumors, including adenocarcinoma and sarcomatoid (spindle cell) carcinoma. We found some tumors to be invasive and a few metastasized to the lung and/or the lymph node. Single-cell RNA-seq analysis of the tumors identified epithelial, stromal, myeloid, and T cell groups. Expression analysis of the metastatic tumors identified S100a4 as a top candidate gene associated with metastasis. Metastatic tumors contained a much higher percentage of epithelial-mesenchymal transition (EMT)-signature positive and S100a4-expressing cells. CRISPR/CAS9-mediated knockout of S100a4 in a metastatic tumor-derived cell line disrupted its metastatic potential indicating a role for S100a4 in metastasis. CONCLUSIONS: Pik3caH1047R;Trp53R270H;MMTV-Cre mouse provides a preclinical model to mimic a subtype of human breast cancers that carry both PIK3CA and TP53 mutations. It also allows for understanding the cooperation between the two mutant genes in tumorigenesis. Our model also provides a system to study metastasis and develop therapeutic strategies for PIK3CA/TP53 double-positive cancers. S100a4 found involved in metastasis in this model can be a potential diagnostic and therapeutic target.
Assuntos
Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Mamárias Experimentais/etiologia , Neoplasias Mamárias Experimentais/metabolismo , Vírus do Tumor Mamário do Camundongo , Mutação , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Infecções Tumorais por Vírus/complicações , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Transformação Celular Viral , Classe I de Fosfatidilinositol 3-Quinases/genética , Modelos Animais de Doenças , Feminino , Marcação de Genes , Humanos , Neoplasias Mamárias Experimentais/patologia , Camundongos , Proteína Supressora de Tumor p53/genética , Infecções Tumorais por Vírus/virologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Deregulated HER2 is a target of many approved cancer drugs. We analyzed 111,176 patient tumors and identified recurrent mutations in HER2 transmembrane domain (TMD) and juxtamembrane domain (JMD) that include G660D, R678Q, E693K, and Q709L. Using a saturation mutagenesis screen and testing of patient-derived mutations we found several activating TMD and JMD mutations. Structural modeling and analysis showed that the TMD/JMD mutations function by improving the active dimer interface or stabilizing an activating conformation. Further, we found that HER2 G660D employed asymmetric kinase dimerization for activation and signaling. Importantly, anti-HER2 antibodies and small-molecule kinase inhibitors blocked the activity of TMD/JMD mutants. Consistent with this, a G660D germline mutant lung cancer patient showed remarkable clinical response to HER2 blockade.
Assuntos
Neoplasias Pulmonares/genética , Domínios Proteicos/genética , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Adulto , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Simulação de Dinâmica Molecular , Mutação/genética , Conformação Proteica , Inibidores de Proteínas Quinases/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Transdução de SinaisRESUMO
A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
RESUMO
Bestinopathies are a spectrum of retinal disorders associated with mutations in BEST1 including autosomal recessive bestrophinopathy (ARB) and autosomal dominant Best vitelliform macular dystrophy (BVMD). We applied whole-exome sequencing on four unrelated Indian families comprising eight affected and twelve unaffected individuals. We identified five mutations in BEST1, including p.Tyr131Cys in family A, p.Arg150Pro in family B, p.Arg47His and p.Val216Ile in family C and p.Thr91Ile in family D. Among these, p.Tyr131Cys, p.Arg150Pro and p.Val216Ile have not been previously reported. Further, the inheritance pattern of BEST1 mutations in the families confirmed the diagnosis of ARB in probands in families A, B and C, while the inheritance of heterozygous BEST1 mutation in family D (p.Thr91Ile) was suggestive of BVMD. Interestingly, the ARB families A and B carry homozygous mutations while family C was a compound heterozygote with a mutation in an alternate BEST1 transcript isoform, highlighting a role for alternate BEST1 transcripts in bestrophinopathy. In the BVMD family D, the heterozygous BEST1 mutation found in the proband was also found in the asymptomatic parent, suggesting an incomplete penetrance and/or the presence of additional genetic modifiers. Our report expands the list of pathogenic BEST1 genotypes and the associated clinical diagnosis.
Assuntos
Bestrofinas/genética , Oftalmopatias Hereditárias/genética , Doenças Retinianas/genética , Distrofia Macular Viteliforme/genética , Adolescente , Adulto , Criança , Oftalmopatias Hereditárias/diagnóstico por imagem , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Índia , Masculino , Mutação , Linhagem , Estudos Prospectivos , Retina/diagnóstico por imagem , Doenças Retinianas/diagnóstico por imagem , Tomografia de Coerência Óptica , Distrofia Macular Viteliforme/diagnóstico por imagem , População Branca/genética , Sequenciamento do Exoma , Adulto JovemRESUMO
We sequenced the Hyposidra talaca NPV (HytaNPV) double stranded circular DNA genome using PacBio single molecule sequencing technology. We found that the HytaNPV genome is 139,089 bp long with a GC content of 39.6%. It encodes 141 open reading frames (ORFs) including the 37 baculovirus core genes, 25 genes conserved among lepidopteran baculoviruses, 72 genes known in baculovirus, and 7 genes unique to the HytaNPV genome. It is a group II alphabaculovirus that codes for the F protein and lacks the gp64 gene found in group I alphabaculovirus viruses. Using RNA-seq, we confirmed the expression of the ORFs identified in the HytaNPV genome. Phylogenetic analysis showed HytaNPV to be closest to BusuNPV, SujuNPV and EcobNPV that infect other tea pests, Buzura suppressaria, Sucra jujuba, and Ectropis oblique, respectively. We identified repeat elements and a conserved non-coding baculovirus element in the genome. Analysis of the putative promoter sequences identified motif consistent with the temporal expression of the genes observed in the RNA-seq data.
Assuntos
Genoma Viral/genética , Mariposas/virologia , Nucleopoliedrovírus/genética , Transcriptoma/genética , Sequenciamento Completo do Genoma/métodos , Sequência de Aminoácidos , Animais , Sequência de Bases , Genes Virais/genética , Larva/virologia , Nucleopoliedrovírus/classificação , Nucleopoliedrovírus/fisiologia , Fases de Leitura Aberta/genética , Filogenia , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido NucleicoRESUMO
BACKGROUND: Maturity-onset diabetes of the young (MODY) is an early-onset, autosomal dominant form of non-insulin dependent diabetes. Genetic diagnosis of MODY can transform patient management. Earlier data on the genetic predisposition to MODY have come primarily from familial studies in populations of European origin. METHODS: In this study, we carried out a comprehensive genomic analysis of 289 individuals from India that included 152 clinically diagnosed MODY cases to identify variants in known MODY genes. Further, we have analyzed exome data to identify putative MODY relevant variants in genes previously not implicated in MODY. Functional validation of MODY relevant variants was also performed. RESULTS: We found MODY 3 (HNF1A; 7.2%) to be most frequently mutated followed by MODY 12 (ABCC8; 3.3%). They together account for ~ 11% of the cases. In addition to known MODY genes, we report the identification of variants in RFX6, WFS1, AKT2, NKX6-1 that may contribute to development of MODY. Functional assessment of the NKX6-1 variants showed that they are functionally impaired. CONCLUSIONS: Our findings showed HNF1A and ABCC8 to be the most frequently mutated MODY genes in south India. Further we provide evidence for additional MODY relevant genes, such as NKX6-1, and these require further validation.
Assuntos
Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença/epidemiologia , Adolescente , Adulto , Estudos de Coortes , Exoma , Feminino , Biblioteca Gênica , Genômica , Hemoglobinas Glicadas/metabolismo , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Índia/epidemiologia , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição de Fator Regulador X/genética , Fatores de Transcrição de Fator Regulador X/metabolismo , Análise de Sequência de DNA , Receptores de Sulfonilureias/genética , Receptores de Sulfonilureias/metabolismo , Adulto JovemRESUMO
Robust diagnostics for many human genetic disorders are much needed in the pursuit of global personalized medicine. Next-generation sequencing now offers new promise for biomarker and diagnostic discovery, in developed as well as resource-limited countries. In this broader global health context, X-linked intellectual disability (XLID) is an inherited genetic disorder that is associated with a range of phenotypes impacting societies in both developed and developing countries. Although intellectual disability arises due to diverse causes, a substantial proportion is caused by genomic alterations. Studies have identified causal XLID genomic alterations in more than 100 protein-coding genes located on the X-chromosome. However, the causes for a substantial number of intellectual disability and associated phenotypes still remain unknown. Identification of causative genes and novel mutations will help in early diagnosis as well as genetic counseling of families. Advent of next-generation sequencing methods has accelerated the discovery of new genes involved in mental health disorders. In this study, we analyzed the exomes of three families from India with nonsyndromic XLID comprising seven affected individuals. The affected individuals had varying degrees of intellectual disability, microcephaly, and delayed motor and language milestones. We identified potential causal variants in three XLID genes, including PAK3 (V294M), CASK (complex structural variant), and MECP2 (P354T). Our findings reported in this study extend the spectrum of mutations and phenotypes associated with XLID, and calls for further studies of intellectual disability and mental health disorders with use of next-generation sequencing technologies.
Assuntos
Genes Ligados ao Cromossomo X , Doenças Genéticas Ligadas ao Cromossomo X/genética , Guanilato Quinases/genética , Deficiência Intelectual/genética , Proteína 2 de Ligação a Metil-CpG/genética , Microcefalia/genética , Quinases Ativadas por p21/genética , Adulto , Criança , Pré-Escolar , DNA/sangue , Exoma/genética , Feminino , Estudos de Associação Genética , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Índia , Deficiência Intelectual/diagnóstico , Masculino , Microcefalia/diagnóstico , Mutação , Linhagem , Fenótipo , Sequenciamento do ExomaRESUMO
Trang phuc linh plus (TPLP) is a food supplement product derived from dried extracts of herbal agents Atractylodes macrocephala, Poria cocos, Paeonia lactiflora, Phellodendron amurense, and added lactobacillus fermentum lysate (ImmuneGamma®) and 5-hydroxytryptophan. TPLP is a functional food used as adjunctive treatment for treating irritable bowel syndrome (IBS). However the biological effect and its mechanism of action in IBS have not been elucidated. In this study, we aimed to determine the pharmacological activities and mode of action of TPLP on IBS animal models. Mice were given a single administration of 5% mustard oil (MO) intracollonically. Acute colitis induction by MO resulted in later development of an IBS-like accelerated upper gastrointestinal transit in mice. Mice were treated with different does of TPLP and controls. Results showed that TPLP at the dose of 654 mg/kg/day given orally significantly decreased intestinal motility (IM) compared with the control animals. The effect was similar to Duspatalin (80 mg/kg/day) (Mebeverine Hydrochloride, an antispasmodic that helps to relieve the pain and discomfort associated with gastrointestinal spasms). Increased TPLP dose (1962 mg/kg/day) had a better effect on relief of IM than Duspatalin (80 mg/kg/day). TPLP also reduced peristalsis frequency and decreased fluid volume and electrolytes excretion in intestine tested in ex vivo models. Overall, TPLP may be an effective nutraceutical supplement for IBS.
Assuntos
Suplementos Nutricionais , Síndrome do Intestino Irritável/tratamento farmacológico , Extratos Vegetais/farmacologia , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colo/efeitos dos fármacos , Colo/patologia , Combinação de Medicamentos , Feminino , Motilidade Gastrointestinal/efeitos dos fármacos , Síndrome do Intestino Irritável/induzido quimicamente , Masculino , Camundongos , Mostardeira , Fenetilaminas/farmacologia , Óleos de PlantasRESUMO
We analyzed transcriptomes (n = 211), whole exomes (n = 99) and targeted exomes (n = 103) from 216 malignant pleural mesothelioma (MPM) tumors. Using RNA-seq data, we identified four distinct molecular subtypes: sarcomatoid, epithelioid, biphasic-epithelioid (biphasic-E) and biphasic-sarcomatoid (biphasic-S). Through exome analysis, we found BAP1, NF2, TP53, SETD2, DDX3X, ULK2, RYR2, CFAP45, SETDB1 and DDX51 to be significantly mutated (q-score ≥ 0.8) in MPMs. We identified recurrent mutations in several genes, including SF3B1 (â¼2%; 4/216) and TRAF7 (â¼2%; 5/216). SF3B1-mutant samples showed a splicing profile distinct from that of wild-type tumors. TRAF7 alterations occurred primarily in the WD40 domain and were, except in one case, mutually exclusive with NF2 alterations. We found recurrent gene fusions and splice alterations to be frequent mechanisms for inactivation of NF2, BAP1 and SETD2. Through integrated analyses, we identified alterations in Hippo, mTOR, histone methylation, RNA helicase and p53 signaling pathways in MPMs.