Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(20)2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39460009

RESUMO

This study proposes a novel hybrid method, FVMD-WOA-GA, for enhancing traffic flow prediction in 5G-enabled intelligent transportation systems. The method integrates fast variational mode decomposition (FVMD) with optimization techniques, namely, the whale optimization algorithm (WOA) and genetic algorithm (GA), to improve the accuracy of overall traffic flow based on models tailored for each decomposed sub-sequence. The selected predictive models-long short-term memory (LSTM), bidirectional LSTM (BiLSTM), gated recurrent unit (GRU), and bidirectional GRU (BiGRU)-were considered to capture diverse temporal dependencies in traffic data. This research explored a multi-stage approach, where the decomposition, optimization, and selection of models are performed systematically to improve prediction performance. Experimental validation on two real-world traffic datasets further underscores the method's efficacy, achieving root mean squared errors (RMSEs) of 152.43 and 7.91 on the respective datasets, which marks improvements of 3.44% and 12.87% compared to the existing methods. These results highlight the ability of the FVMD-WOA-GA approach to improve prediction accuracy significantly, reduce inference time, enhance system adaptability, and contribute to more efficient traffic management.

2.
Sensors (Basel) ; 24(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38894128

RESUMO

Intrusion detection systems (IDSs) in wireless sensor networks (WSNs) rely heavily on effective feature selection (FS) for enhanced efficacy. This study proposes a novel approach called Genetic Sacrificial Whale Optimization (GSWO) to address the limitations of conventional methods. GSWO combines a genetic algorithm (GA) and whale optimization algorithms (WOA) modified by applying a new three-population division strategy with a proposed conditional inherited choice (CIC) to overcome premature convergence in WOA. The proposed approach achieves a balance between exploration and exploitation and enhances global search abilities. Additionally, the CatBoost model is employed for classification, effectively handling categorical data with complex patterns. A new technique for fine-tuning CatBoost's hyperparameters is introduced, using effective quantization and the GSWO strategy. Extensive experimentation on various datasets demonstrates the superiority of GSWO-CatBoost, achieving higher accuracy rates on the WSN-DS, WSNBFSF, NSL-KDD, and CICIDS2017 datasets than the existing approaches. The comprehensive evaluations highlight the real-time applicability and accuracy of the proposed method across diverse data sources, including specialized WSN datasets and established benchmarks. Specifically, our GSWO-CatBoost method has an inference time nearly 100 times faster than deep learning methods while achieving high accuracy rates of 99.65%, 99.99%, 99.76%, and 99.74% for WSN-DS, WSNBFSF, NSL-KDD, and CICIDS2017, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA