Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(1): 474-491, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38000387

RESUMO

Targeted epigenome editing tools allow precise manipulation and investigation of genome modifications, however they often display high context dependency and variable efficacy between target genes and cell types. While systems that simultaneously recruit multiple distinct 'effector' chromatin regulators can improve efficacy, they generally lack control over effector composition and spatial organisation. To overcome this we have created a modular combinatorial epigenome editing platform, called SSSavi. This system is an interchangeable and reconfigurable docking platform fused to dCas9 that enables simultaneous recruitment of up to four different effectors, allowing precise control of effector composition and spatial ordering. We demonstrate the activity and specificity of the SSSavi system and, by testing it against existing multi-effector targeting systems, demonstrate its comparable efficacy. Furthermore, we demonstrate the importance of the spatial ordering of the recruited effectors for effective transcriptional regulation. Together, the SSSavi system enables exploration of combinatorial effector co-recruitment to enhance manipulation of chromatin contexts previously resistant to targeted editing.


Assuntos
Epigenoma , Edição de Genes , Cromatina/genética , Sistemas CRISPR-Cas , Epigênese Genética , Edição de Genes/métodos , Regulação da Expressão Gênica
2.
Nature ; 620(7975): 863-872, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37587336

RESUMO

Cells undergo a major epigenome reconfiguration when reprogrammed to human induced pluripotent stem cells (hiPS cells). However, the epigenomes of hiPS cells and human embryonic stem (hES) cells differ significantly, which affects hiPS cell function1-8. These differences include epigenetic memory and aberrations that emerge during reprogramming, for which the mechanisms remain unknown. Here we characterized the persistence and emergence of these epigenetic differences by performing genome-wide DNA methylation profiling throughout primed and naive reprogramming of human somatic cells to hiPS cells. We found that reprogramming-induced epigenetic aberrations emerge midway through primed reprogramming, whereas DNA demethylation begins early in naive reprogramming. Using this knowledge, we developed a transient-naive-treatment (TNT) reprogramming strategy that emulates the embryonic epigenetic reset. We show that the epigenetic memory in hiPS cells is concentrated in cell of origin-dependent repressive chromatin marked by H3K9me3, lamin-B1 and aberrant CpH methylation. TNT reprogramming reconfigures these domains to a hES cell-like state and does not disrupt genomic imprinting. Using an isogenic system, we demonstrate that TNT reprogramming can correct the transposable element overexpression and differential gene expression seen in conventional hiPS cells, and that TNT-reprogrammed hiPS and hES cells show similar differentiation efficiencies. Moreover, TNT reprogramming enhances the differentiation of hiPS cells derived from multiple cell types. Thus, TNT reprogramming corrects epigenetic memory and aberrations, producing hiPS cells that are molecularly and functionally more similar to hES cells than conventional hiPS cells. We foresee TNT reprogramming becoming a new standard for biomedical and therapeutic applications and providing a novel system for studying epigenetic memory.


Assuntos
Reprogramação Celular , Epigênese Genética , Células-Tronco Pluripotentes Induzidas , Humanos , Cromatina/genética , Cromatina/metabolismo , Desmetilação do DNA , Metilação de DNA , Elementos de DNA Transponíveis , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Lamina Tipo B
3.
Genome Biol ; 23(1): 163, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35883107

RESUMO

BACKGROUND: Cytosine DNA methylation is widely described as a transcriptional repressive mark with the capacity to silence promoters. Epigenome engineering techniques enable direct testing of the effect of induced DNA methylation on endogenous promoters; however, the downstream effects have not yet been comprehensively assessed. RESULTS: Here, we simultaneously induce methylation at thousands of promoters in human cells using an engineered zinc finger-DNMT3A fusion protein, enabling us to test the effect of forced DNA methylation upon transcription, chromatin accessibility, histone modifications, and DNA methylation persistence after the removal of the fusion protein. We find that transcriptional responses to DNA methylation are highly context-specific, including lack of repression, as well as cases of increased gene expression, which appears to be driven by the eviction of methyl-sensitive transcriptional repressors. Furthermore, we find that some regulatory networks can override DNA methylation and that promoter methylation can cause alternative promoter usage. DNA methylation deposited at promoter and distal regulatory regions is rapidly erased after removal of the zinc finger-DNMT3A fusion protein, in a process combining passive and TET-mediated demethylation. Finally, we demonstrate that induced DNA methylation can exist simultaneously on promoter nucleosomes that possess the active histone modification H3K4me3, or DNA bound by the initiated form of RNA polymerase II. CONCLUSIONS: These findings have important implications for epigenome engineering and demonstrate that the response of promoters to DNA methylation is more complex than previously appreciated.


Assuntos
DNA (Citosina-5-)-Metiltransferases , Metilação de DNA , Cromatina , Ilhas de CpG , DNA/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Humanos , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo
4.
Methods Mol Biol ; 2272: 181-194, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34009614

RESUMO

Methylation of DNA at cytosine bases is an important DNA modification underlying normal development and disease states. Despite decades of research into the biological function of DNA methylation, most of the observations so far have relied primarily on associative data between observed changes in DNA methylation states and local changes in transcriptional activity or chromatin state processes. This is primarily due to the lack of molecular tools to precisely modify DNA methylation in the genome. Recent advances in genome editing technologies have allowed repurposing the CRISPR-Cas9 system for epigenome editing by fusing the catalytically dead Cas9 (dCas9) to epigenome modifying enzymes. Moreover, methods of recruiting multiple protein domains, including the SunTag system, have increased the efficacy of epigenome editing at target sites. Here, we describe an end-to-end protocol for efficient targeted removal of DNA methylation by recruiting multiple catalytic domain of TET1 enzymes to the target sites with the dCas9-SunTag system, including sgRNA design, molecular cloning, delivery of plasmid into mammalian cells, and targeted DNA methylation analysis.


Assuntos
Sistemas CRISPR-Cas , Desmetilação do DNA , DNA/análise , Edição de Genes , Genoma Humano , Oxigenases de Função Mista/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Sulfitos/química , Cromatina , Biologia Computacional/métodos , DNA/química , DNA/genética , Epigênese Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Oxigenases de Função Mista/antagonistas & inibidores , Oxigenases de Função Mista/genética , Oxirredução , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética
5.
Sci Total Environ ; 536: 575-581, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26247686

RESUMO

Dioxin concentrations remain elevated in both the environment and in humans residing near former US Air Force bases in South Vietnam. This may potentially have adverse health effects, particularly on infant neurodevelopment. We followed 214 infants whose mothers resided in a dioxin-contaminated area in Da Nang, Vietnam, from birth until 1 year of age. Perinatal exposure to dioxins was estimated from toxic equivalent (TEQ) levels of polychlorinated dibenzodioxins and polychlorinated dibenzofurans (PCDDs/Fs-TEQ), and 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TetraCDD) concentrations in breast milk. In infants, daily dioxin intake (DDI) was used as an index of postnatal exposure through breastfeeding. Neurodevelopment of toddlers was assessed using the Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III). No significant differences in neurodevelopmental scores were exhibited for cognitive, language or motor functions between four exposure groups of PCDDs/Fs-TEQ or 2,3,7,8-TetraCDD. However, social-emotional scores were decreased in the high PCDDs/Fs-TEQ group and the high 2,3,7,8-TetraCDD group compared with those with mild exposure, after adjusting for confounding factors. Cognitive scores in the mild, moderate, and high DDI groups were significantly higher than those in low DDI group, but there were no differences in cognitive scores among the three higher DDI groups. These results suggest that perinatal exposure to dioxins may affect social-emotional development of 1-year-old toddlers, without diminishing global neurodevelopmental function.


Assuntos
Dioxinas/metabolismo , Poluentes Ambientais/metabolismo , Exposição Materna/estatística & dados numéricos , Sistema Nervoso/crescimento & desenvolvimento , Aleitamento Materno/estatística & dados numéricos , Dioxinas/toxicidade , Poluentes Ambientais/toxicidade , Feminino , Humanos , Lactente , Masculino , Vietnã
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA