Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Bio Eng ; 1(5): 427-438, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38957543

RESUMO

Biomass is an abundantly available, underutilized feedstock for the production of bulk and fine chemicals, polymers, and sustainable and biodegradable plastics that are traditionally sourced from petrochemicals. Among potential feedstocks, 2,5-furan dicarboxylic acid (FDCA) stands out for its potential to be converted to higher-value polymeric materials such as polyethylene furandicarboxylate (PEF), a bio-based plastic alternative. In this study, the sustainable, electrocatalytic oxidation of stable furan molecule 2,5-bis(hydroxymethyl)furan (BHMF) to FDCA is investigated using a variety of TEMPO derivative electrocatalysts in a mediated electrosynthetic reaction. Three TEMPO catalysts (acetamido-TEMPO, methoxy-TEMPO, and TEMPO) facilitate full conversion to FDCA in basic conditions with >90% yield and >100% Faradaic efficiency. The remaining three TEMPO catalysts (hydroxy-TEMPO, oxo-TEMPO, and amino-TEMPO) all perform intermediate oxidation of BHMF in basic conditions but do not facilitate full conversion to FDCA. On the basis of pH studies completed on all TEMPO derivatives to assess their electrochemical reversibility and response to substrate, pH and reversibility play significant roles in the catalytic ability of each catalyst, which directly influences catalyst turnover and product formation. More broadly, this study also highlights the importance of an effective and rapid electroanalytical workflow in mediated electrosynthetic reactions, demonstrating how voltammetric catalyst screening can serve as a useful tool for predicting the reactivity and efficacy of a catalyst-substrate electrochemical system.

5.
J Am Chem Soc ; 145(32): 17665-17677, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37530748

RESUMO

The utility of transition metal hydride catalyzed hydrogen atom transfer (MHAT) has been widely demonstrated in organic transformations such as alkene isomerization and hydrofunctionalization reactions. However, the highly reactive nature of the hydride and radical intermediates has hindered mechanistic insight into this pivotal reaction. Recent advances in electrochemical MHAT have opened up the possibility for new analytical approaches for mechanistic diagnosis. Here, we report a voltammetric interrogation of Co-based MHAT reactivity, describing in detail the oxidative formation and reactivity of the key Co-H intermediate and its reaction with aryl alkenes. Insights from cyclic voltammetry and finite element simulations help elucidate the rate-limiting step as metal hydride formation, which we show to be widely tunable based on ligand design. Voltammetry is also suggestive of the formation of Co-alkyl intermediates and a dynamic equilibrium with the reactive neutral radical. These mechanistic studies provide information for the design of future hydrofunctionalization reactions, such as catalyst and silane choice, the relative stability of metal-alkyl species, and how hydrofunctionalization reactions utilize Co-alkyl intermediates. In summary, these studies establish an important template for studying MHAT reactions from the perspective of electrochemical kinetic frameworks.

6.
Angew Chem Int Ed Engl ; 62(46): e202307780, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37428529

RESUMO

Bioelectrocatalytic synthesis is the conversion of electrical energy into value-added products using biocatalysts. These methods merge the specificity and selectivity of biocatalysis and energy-related electrocatalysis to address challenges in the sustainable synthesis of pharmaceuticals, commodity chemicals, fuels, feedstocks and fertilizers. However, the specialized experimental setups and domain knowledge for bioelectrocatalysis pose a significant barrier to adoption. This review introduces key concepts of bioelectrosynthetic systems. We provide a tutorial on the methods of biocatalyst utilization, the setup of bioelectrosynthetic cells, and the analytical methods for assessing bioelectrocatalysts. Key applications of bioelectrosynthesis in ammonia production and small-molecule synthesis are outlined for both enzymatic and microbial systems. This review serves as a necessary introduction and resource for the non-specialist interested in bioelectrosynthetic research.


Assuntos
Eletricidade , Biocatálise
7.
Faraday Discuss ; 247(0): 147-158, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37489255

RESUMO

Transition metal catalysis hinges on the formation of metal-carbon bonds during catalytic cycles. The stability and reactivity of these bonds are what determine product chemo-, regio-, and enantioselectivity. The advent of electrosynthetic methodologies has placed the current understanding of these metal-alkyl bonds into a new environment of charged species and electrochemically induced reactivity. In this paper, we explore the often neglected impact of supporting electrolyte on homogeneous electrocatalytic mechanisms using the catalytic reduction of benzyl chlorides via Co and Fe tetraphenylporphyrins as a model reaction. The mechanism of this reaction is confirmed to proceed through the formation of the metal-alkyl intermediates. Critically, the stability of these intermediates, in both the Co and Fe systems, is found to be affected by the hydrodynamic radius of the supporting electrolyte, leading to differences in electrolyte-solvent shell. These studies provide important information for the design of electrosynthetic reactions, and provide a starting point for the rational design of functional supporting electrolytes.

8.
Cell Chem Biol ; 30(1): 97-109.e9, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36626903

RESUMO

Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates plasma low-density lipoprotein cholesterol (LDL-C) levels by promoting the degradation of hepatic LDL receptors (LDLRs). Current therapeutic approaches use antibodies that disrupt PCSK9 binding to LDLR to reduce circulating LDL-C concentrations or siRNA that reduces PCSK9 synthesis and thereby levels in circulation. Recent reports describe small molecules that, like therapeutic antibodies, interfere with PCSK9 binding to LDLR. We report an alternative approach to decrease circulating PCSK9 levels by accelerating PCSK9 clearance and degradation using heterobifunctional molecules that simultaneously bind to PCSK9 and the asialoglycoprotein receptor (ASGPR). Various formats, including bispecific antibodies, antibody-small molecule conjugates, and heterobifunctional small molecules, demonstrate binding in vitro and accelerated PCSK9 clearance in vivo. These molecules showcase a new approach to PCSK9 inhibition, targeted plasma protein degradation (TPPD), and demonstrate the feasibility of heterobifunctional small molecule ligands to accelerate the clearance and degradation of pathogenic proteins in circulation.


Assuntos
Pró-Proteína Convertase 9 , Serina Endopeptidases , Pró-Proteína Convertase 9/metabolismo , Receptor de Asialoglicoproteína , Serina Endopeptidases/metabolismo , Pró-Proteína Convertases/genética , Pró-Proteína Convertases/metabolismo , LDL-Colesterol , Ligantes
9.
J Am Chem Soc ; 140(6): 2105-2114, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29376367

RESUMO

The activity of DNA repair enzyme 8-oxoguanine DNA glycosylase (OGG1), which excises oxidized base 8-oxoguanine (8-OG) from DNA, is closely linked to mutagenesis, genotoxicity, cancer, and inflammation. To test the roles of OGG1-mediated repair in these pathways, we have undertaken the development of noncovalent small-molecule inhibitors of the enzyme. Screening of a PubChem-annotated library using a recently developed fluorogenic 8-OG excision assay resulted in multiple validated hit structures, including selected lead hit tetrahydroquinoline 1 (IC50 = 1.7 µM). Optimization of the tetrahydroquinoline scaffold over five regions of the structure ultimately yielded amidobiphenyl compound 41 (SU0268; IC50 = 0.059 µM). SU0268 was confirmed by surface plasmon resonance studies to bind the enzyme both in the absence and in the presence of DNA. The compound SU0268 was shown to be selective for inhibiting OGG1 over multiple repair enzymes, including other base excision repair enzymes, and displayed no toxicity in two human cell lines at 10 µM. Finally, experiments confirm the ability of SU0268 to inhibit OGG1 in HeLa cells, resulting in an increase in accumulation of 8-OG in DNA. The results suggest the compound SU0268 as a potentially useful tool in studies of the role of OGG1 in multiple disease-related pathways.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , DNA Glicosilases/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Células CACO-2 , DNA Glicosilases/metabolismo , Guanina/análogos & derivados , Guanina/metabolismo , Células HEK293 , Células HeLa , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA