Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biofabrication ; 16(2)2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38128127

RESUMO

Insulin is an essential regulator of blood glucose homeostasis that is produced exclusively byßcells within the pancreatic islets of healthy individuals. In those affected by diabetes, immune inflammation, damage, and destruction of isletßcells leads to insulin deficiency and hyperglycemia. Current efforts to understand the mechanisms underlyingßcell damage in diabetes rely onin vitro-cultured cadaveric islets. However, isolation of these islets involves removal of crucial matrix and vasculature that supports islets in the intact pancreas. Unsurprisingly, these islets demonstrate reduced functionality over time in standard culture conditions, thereby limiting their value for understanding native islet biology. Leveraging a novel, vascularized micro-organ (VMO) approach, we have recapitulated elements of the native pancreas by incorporating isolated human islets within a three-dimensional matrix nourished by living, perfusable blood vessels. Importantly, these islets show long-term viability and maintain robust glucose-stimulated insulin responses. Furthermore, vessel-mediated delivery of immune cells to these tissues provides a model to assess islet-immune cell interactions and subsequent islet killing-key steps in type 1 diabetes pathogenesis. Together, these results establish the islet-VMO as a novel,ex vivoplatform for studying human islet biology in both health and disease.


Assuntos
Diabetes Mellitus , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Humanos , Insulina/metabolismo , Diabetes Mellitus/metabolismo , Glucose/metabolismo
2.
Dev Cell ; 58(9): 727-743.e11, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37040771

RESUMO

Pancreatic islet cells derived from human pluripotent stem cells hold great promise for modeling and treating diabetes. Differences between stem-cell-derived and primary islets remain, but molecular insights to inform improvements are limited. Here, we acquire single-cell transcriptomes and accessible chromatin profiles during in vitro islet differentiation and pancreas from childhood and adult donors for comparison. We delineate major cell types, define their regulomes, and describe spatiotemporal gene regulatory relationships between transcription factors. CDX2 emerged as a regulator of enterochromaffin-like cells, which we show resemble a transient, previously unrecognized, serotonin-producing pre-ß cell population in fetal pancreas, arguing against a proposed non-pancreatic origin. Furthermore, we observe insufficient activation of signal-dependent transcriptional programs during in vitro ß cell maturation and identify sex hormones as drivers of ß cell proliferation in childhood. Altogether, our analysis provides a comprehensive understanding of cell fate acquisition in stem-cell-derived islets and a framework for manipulating cell identities and maturity.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Células-Tronco Pluripotentes , Adulto , Humanos , Pâncreas , Diferenciação Celular/genética
3.
Nat Biotechnol ; 40(7): 1006-1008, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35288669

Assuntos
Células-Tronco
4.
Cancer Res ; 80(13): 2804-2817, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32376602

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy characterized by extensive local invasion and systemic spread. In this study, we employed a three-dimensional organoid model of human pancreatic cancer to characterize the molecular alterations critical for invasion. Time-lapse microscopy was used to observe invasion in organoids from 25 surgically resected human PDAC samples in collagen I. Subsequent lentiviral modification and small-molecule inhibitors were used to investigate the molecular programs underlying invasion in PDAC organoids. When cultured in collagen I, PDAC organoids exhibited two distinct, morphologically defined invasive phenotypes, mesenchymal and collective. Each individual PDAC gave rise to organoids with a predominant phenotype, and PDAC that generated organoids with predominantly mesenchymal invasion showed a worse prognosis. Collective invasion predominated in organoids from cancers with somatic mutations in the driver gene SMAD4 (or its signaling partner TGFBR2). Reexpression of SMAD4 abrogated the collective invasion phenotype in SMAD4-mutant PDAC organoids, indicating that SMAD4 loss is required for collective invasion in PDAC organoids. Surprisingly, invasion in passaged SMAD4-mutant PDAC organoids required exogenous TGFß, suggesting that invasion in SMAD4-mutant organoids is mediated through noncanonical TGFß signaling. The Rho-like GTPases RAC1 and CDC42 acted as potential mediators of TGFß-stimulated invasion in SMAD4-mutant PDAC organoids, as inhibition of these GTPases suppressed collective invasion in our model. These data suggest that PDAC utilizes different invasion programs depending on SMAD4 status, with collective invasion uniquely present in PDAC with SMAD4 loss. SIGNIFICANCE: Organoid models of PDAC highlight the importance of SMAD4 loss in invasion, demonstrating that invasion programs in SMAD4-mutant and SMAD4 wild-type tumors are different in both morphology and molecular mechanism.


Assuntos
Adenocarcinoma/mortalidade , Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/mortalidade , Regulação Neoplásica da Expressão Gênica , Organoides/patologia , Neoplasias Pancreáticas/mortalidade , Proteína Smad4/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adenocarcinoma/cirurgia , Biomarcadores Tumorais/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/cirurgia , Movimento Celular , Proliferação de Células , Humanos , Invasividade Neoplásica , Organoides/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/cirurgia , Prognóstico , Transdução de Sinais , Proteína Smad4/genética , Taxa de Sobrevida , Células Tumorais Cultivadas
5.
iScience ; 21: 681-694, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31733514

RESUMO

Pancreatic endocrine cell differentiation is orchestrated by the action of transcription factors that operate in a gene regulatory network to activate endocrine lineage genes and repress lineage-inappropriate genes. MicroRNAs (miRNAs) are important modulators of gene expression, yet their role in endocrine cell differentiation has not been systematically explored. Here we characterize miRNA-regulatory networks active in human endocrine cell differentiation by combining small RNA sequencing, miRNA over-expression, and network modeling approaches. Our analysis identified Let-7g, Let-7a, miR-200a, miR-127, and miR-375 as endocrine-enriched miRNAs that drive endocrine cell differentiation-associated gene expression changes. These miRNAs are predicted to target different transcription factors, which converge on genes involved in cell cycle regulation. When expressed in human embryonic stem cell-derived pancreatic progenitors, these miRNAs induce cell cycle exit and promote endocrine cell differentiation. Our study delineates the role of miRNAs in human endocrine cell differentiation and identifies miRNAs that could facilitate endocrine cell reprogramming.

6.
Tissue Eng Part C Methods ; 24(12): 697-708, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30398401

RESUMO

Different approaches have investigated the effects of different extracellular matrices (ECMs) and three-dimensional (3D) culture on islet function, showing encouraging results. Ideally, the proper scaffold should mimic the biochemical composition of the native tissue as it drives numerous signaling pathways involved in tissue homeostasis and functionality. Tissue-derived decellularized biomaterials can preserve the ECM composition of the native tissue making it an ideal scaffold for 3D tissue engineering applications. However, the decellularization process may affect the retention of specific components, and the choice of a proper detergent is fundamental in preserving the native ECM composition. In this study, we evaluated the effect of different decellularization protocols on the mechanical properties and biochemical composition of pancreatic ECM (pECM) hydrogels. Fresh porcine pancreas tissue was harvested, cut into small pieces, rinsed in water, and treated with two different detergents (sodium dodecyl sulfate [SDS] or Triton X-100) for 1 day followed by 3 days in water. Effective decellularization was confirmed by PicoGreen assay, Hoescht, and H&E staining, showing no differences among groups. Use of a protease inhibitor (PI) was also evaluated. Effective decellularization was confirmed by PicoGreen assay and hematoxylin and eosin (H&E) staining, showing no differences among groups. Triton-treated samples were able to form a firm hydrogel under appropriate conditions, while the use of SDS had detrimental effects on the gelation properties of the hydrogels. ECM biochemical composition was characterized both in the fresh porcine pancreas and all decellularized pECM hydrogels by quantitative mass spectrometry analysis. Fibrillar collagen was the major ECM component in all groups, with all generated hydrogels having a higher amount compared with fresh pancreas. This effect was more pronounced in the SDS-treated hydrogels when compared with the Triton groups, showing very little retention of other ECM molecules. Conversely, basement membrane and matricellular proteins were better retained when the tissue was pretreated with a PI and decellularized in Triton X-100, making the hydrogel more similar to the native tissue. In conclusion, we showed that all the protocols evaluated in the study showed effective tissue decellularization, but only when the tissue was pretreated with a PI and decellularized in Triton detergent, the biochemical composition of the hydrogel was closer to the native tissue ECM. Impact Statement The article compares different methodologies for the generation of a pancreas-derived hydrogel for tissue engineering applications. The biochemical characterization of the newly generated hydrogel shows that the material retains all the extracellular molecules of the native tissue and is capable of sustaining functionality of the encapsulated beta-cells.


Assuntos
Hidrogéis/farmacologia , Pâncreas/fisiologia , Engenharia Tecidual/métodos , Animais , Linhagem Celular , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Fluorescência , Glucose/farmacologia , Glicosaminoglicanos/metabolismo , Secreção de Insulina/efeitos dos fármacos , Pâncreas/citologia , Pâncreas/efeitos dos fármacos , Pepsina A/metabolismo , Proteômica , Ratos , Sulfatos/metabolismo , Suínos , Sobrevivência de Tecidos/efeitos dos fármacos
7.
J Cell Sci ; 130(19): 3213-3221, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28821574

RESUMO

The mammary epithelium elaborates through hormonally regulated changes in proliferation, migration and differentiation. Non-muscle myosin II (NMII) functions at the interface between contractility, adhesion and signal transduction. It is therefore a plausible regulator of mammary morphogenesis. We tested the genetic requirement for NMIIA and NMIIB in mammary morphogenesis through deletion of the three NMII heavy chain-encoding genes (NMHCIIA, NMHCIIB and NMHCIIC; also known as MYH9, MYH10 and MYH14, respectively) that confer specificity to the complex. Surprisingly, mosaic loss, but not ubiquitous loss, of NMHCIIA and NMHCIIB induced high levels of proliferation in 3D culture. This phenotype was observed even when cells were cultured in basal medium, which does not support tissue level growth of wild-type epithelium. Mosaic loss of NMIIA and NMIIB combined with FGF signaling to induce hyperplasia. Mosaic analysis revealed that the cells that were null for both NMIIA and NMIIB, as well as wild-type cells, proliferated, indicating that the regulation of proliferation is both cell autonomous and non-autonomous within epithelial tissues. This phenotype appears to be mediated by cell-cell contact, as co-culture did not induce proliferation. Mosaic loss of NMIIA and NMIIB also induced excess proliferation in vivo Our data therefore reveal a role for NMIIA and NMIIB as negative regulators of proliferation in the mammary epithelium.


Assuntos
Proliferação de Células , Glândulas Mamárias Animais/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , Miosina não Muscular Tipo IIB/metabolismo , Animais , Técnicas de Cultura de Células , Células Cultivadas , Feminino , Glândulas Mamárias Animais/citologia , Camundongos , Camundongos Knockout , Cadeias Pesadas de Miosina/genética , Miosina Tipo II/genética , Miosina Tipo II/metabolismo , Miosina não Muscular Tipo IIA/genética , Miosina não Muscular Tipo IIB/genética
8.
Methods Mol Biol ; 1189: 135-62, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25245692

RESUMO

Epithelia are fundamental tissues that line cavities, glands, and outer body surfaces. We use three-dimensional (3D) embedded culture of primary murine mammary epithelial ducts, called "organoids," to recapitulate in days in culture epithelial programs that occur over weeks deep within the body. Modulating the composition of the extracellular matrix (ECM) allows us to model cell- and tissue-level behaviors observed in normal development, such as branching morphogenesis, and in cancer, such as invasion and dissemination. Here, we describe a collection of protocols for 3D culture of mammary organoids in different ECMs and for immunofluorescence staining of 3D culture samples and mammary gland tissue sections. We illustrate expected phenotypic outcomes of each assay and provide troubleshooting tips for commonly encountered technical problems.


Assuntos
Técnicas de Cultura de Células/métodos , Células Epiteliais/citologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Morfogênese , Animais , Bioensaio , Separação Celular , Forma Celular/efeitos dos fármacos , Colágeno/farmacologia , Colágeno Tipo I/farmacologia , Combinação de Medicamentos , Células Epiteliais/efeitos dos fármacos , Feminino , Imunofluorescência , Laminina/farmacologia , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/efeitos dos fármacos , Camundongos , Morfogênese/efeitos dos fármacos , Organoides/citologia , Organoides/efeitos dos fármacos , Fenótipo , Proteoglicanas/farmacologia , Ratos , Soroalbumina Bovina/metabolismo , Coloração e Rotulagem
9.
Proc Natl Acad Sci U S A ; 109(39): E2595-604, 2012 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-22923691

RESUMO

Breast cancer progression involves genetic changes and changes in the extracellular matrix (ECM). To test the importance of the ECM in tumor cell dissemination, we cultured epithelium from primary human breast carcinomas in different ECM gels. We used basement membrane gels to model the normal microenvironment and collagen I to model the stromal ECM. In basement membrane gels, malignant epithelium either was indolent or grew collectively, without protrusions. In collagen I, epithelium from the same tumor invaded with protrusions and disseminated cells. Importantly, collagen I induced a similar initial response of protrusions and dissemination in both normal and malignant mammary epithelium. However, dissemination of normal cells into collagen I was transient and ceased as laminin 111 localized to the basal surface, whereas dissemination of carcinoma cells was sustained throughout culture, and laminin 111 was not detected. Despite the large impact of ECM on migration strategy, transcriptome analysis of our 3D cultures revealed few ECM-dependent changes in RNA expression. However, we observed many differences between normal and malignant epithelium, including reduced expression of cell-adhesion genes in tumors. Therefore, we tested whether deletion of an adhesion gene could induce sustained dissemination of nontransformed cells into collagen I. We found that deletion of P-cadherin was sufficient for sustained dissemination, but exclusively into collagen I. Our data reveal that metastatic tumors preferentially disseminate in specific ECM microenvironments. Furthermore, these data suggest that breaks in the basement membrane could induce invasion and dissemination via the resulting direct contact between cancer cells and collagen I.


Assuntos
Neoplasias da Mama , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Neoplasias Mamárias Animais , Microambiente Tumoral , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Humanos , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , Camundongos , Invasividade Neoplásica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA