Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
2.
JCI Insight ; 7(10)2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35446785

RESUMO

The RTS,S/AS01E vaccine targets the circumsporozoite protein (CSP) of the Plasmodium falciparum (P. falciparum) parasite. Protein microarrays were used to measure levels of IgG against 1000 P. falciparum antigens in 2138 infants (age 6-12 weeks) and children (age 5-17 months) from 6 African sites of the phase III trial, sampled before and at 4 longitudinal visits after vaccination. One month postvaccination, IgG responses to 17% of all probed antigens showed differences between RTS,S/AS01E and comparator vaccination groups, whereas no prevaccination differences were found. A small subset of antigens presented IgG levels reaching 4- to 8-fold increases in the RTS,S/AS01E group, comparable in magnitude to anti-CSP IgG levels (~11-fold increase). They were strongly cross-correlated and correlated with anti-CSP levels, waning similarly over time and reincreasing with the booster dose. Such an intriguing phenomenon may be due to cross-reactivity of anti-CSP antibodies with these antigens. RTS,S/AS01E vaccinees with strong off-target IgG responses had an estimated lower clinical malaria incidence after adjusting for age group, site, and postvaccination anti-CSP levels. RTS,S/AS01E-induced IgG may bind strongly not only to CSP, but also to unrelated malaria antigens, and this seems to either confer, or at least be a marker of, increased protection from clinical malaria.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Anticorpos Antiprotozoários , Antígenos de Protozoários , Criança , Humanos , Imunoglobulina G , Lactente , Malária/prevenção & controle , Malária Falciparum/prevenção & controle , Vacinação
3.
Vaccine ; 39(4): 687-698, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33358704

RESUMO

BACKGROUND: The evaluation of immune responses to RTS,S/AS01 has traditionally focused on immunoglobulin (Ig) G antibodies that are only moderately associated with protection. The role of other antibody isotypes that could also contribute to vaccine efficacy remains unclear. Here we investigated whether RTS,S/AS01E elicits antigen-specific serum IgA antibodies to the vaccine and other malaria antigens, and we explored their association with protection. METHODS: Ninety-five children (age 5-17 months old at first vaccination) from the RTS,S/AS01E phase 3 clinical trial who received 3 doses of RTS,S/AS01E or a comparator vaccine were selected for IgA quantification 1 month post primary immunization. Two sites with different malaria transmission intensities (MTI) and clinical malaria cases and controls, were included. Measurements of IgA against different constructs of the circumsporozoite protein (CSP) vaccine antigen and 16 vaccine-unrelated Plasmodium falciparum antigens were performed using a quantitative suspension array assay. RESULTS: RTS,S vaccination induced a 1.2 to 2-fold increase in levels of serum/plasma IgA antibodies to all CSP constructs, which was not observed upon immunization with a comparator vaccine. The IgA response against 13 out of 16 vaccine-unrelated P. falciparum antigens also increased after vaccination, and levels were higher in recipients of RTS,S than in comparators. IgA levels to malaria antigens before vaccination were more elevated in the high MTI than the low MTI site. No statistically significant association of IgA with protection was found in exploratory analyses. CONCLUSIONS: RTS,S/AS01E induces IgA responses in peripheral blood against CSP vaccine antigens and other P. falciparum vaccine-unrelated antigens, similar to what we previously showed for IgG responses. Collectively, data warrant further investigation of the potential contribution of vaccine-induced IgA responses to efficacy and any possible interplay, either synergistic or antagonistic, with protective IgG, as identifying mediators of protection by RTS,S/AS01E immunization is necessary for the design of improved second-generation vaccines. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov: NCT008666191.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Adolescente , Anticorpos Antiprotozoários , Antígenos de Protozoários , Criança , Pré-Escolar , Humanos , Imunoglobulina A , Lactente , Malária/prevenção & controle , Malária Falciparum/prevenção & controle , Plasmodium falciparum , Proteínas de Protozoários
5.
NPJ Vaccines ; 5: 46, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32550014

RESUMO

The RTS,S/AS01E vaccine has shown consistent but partial vaccine efficacy in a pediatric phase 3 clinical trial using a 3-dose immunization schedule. A fourth-dose 18 months after the primary vaccination was shown to restore the waning efficacy. However, only total IgG against the immunodominant malaria vaccine epitope has been analyzed following the booster. To better characterize the magnitude, nature, and longevity of the immune response to the booster, we measured levels of total IgM, IgG, and IgG1-4 subclasses against three constructs of the circumsporozoite protein (CSP) and the hepatitis B surface antigen (HBsAg, also present in RTS,S) by quantitative suspension array technology in 50 subjects in the phase 3 trial in Manhiça, Mozambique. To explore the impact of vaccination on naturally acquired immune responses, we measured antibodies to P. falciparum antigens not included in RTS,S. We found increased IgG, IgG1, IgG3 and IgG4, but not IgG2 nor IgM, levels against vaccine antigens 1 month after the fourth dose. Overall, antibody responses to the booster dose were lower than the initial peak response to primary immunization and children had higher IgG and IgG1 levels than infants. Higher anti-Rh5 IgG and IgG1-4 levels were detected after the booster dose, suggesting that RTS,S partial protection could increase some blood stage antibody responses. Our work shows that the response to the RTS,S/AS01E booster dose is different from the primary vaccine immune response and highlights the dynamic changes in subclass antibody patterns upon the vaccine booster and with acquisition of adaptive immunity to malaria.

6.
BMC Med ; 17(1): 157, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31409398

RESUMO

BACKGROUND: Vaccination and naturally acquired immunity against microbial pathogens may have complex interactions that influence disease outcomes. To date, only vaccine-specific immune responses have routinely been investigated in malaria vaccine trials conducted in endemic areas. We hypothesized that RTS,S/A01E immunization affects acquisition of antibodies to Plasmodium falciparum antigens not included in the vaccine and that such responses have an impact on overall malaria protective immunity. METHODS: We evaluated IgM and IgG responses to 38 P. falciparum proteins putatively involved in naturally acquired immunity to malaria in 195 young children participating in a case-control study nested within the African phase 3 clinical trial of RTS,S/AS01E (MAL055 NCT00866619) in two sites of different transmission intensity (Kintampo high and Manhiça moderate/low). We measured antibody levels by quantitative suspension array technology and applied regression models, multimarker analysis, and machine learning techniques to analyze factors affecting their levels and correlates of protection. RESULTS: RTS,S/AS01E immunization decreased antibody responses to parasite antigens considered as markers of exposure (MSP142, AMA1) and levels correlated with risk of clinical malaria over 1-year follow-up. In addition, we show for the first time that RTS,S vaccination increased IgG levels to a specific group of pre-erythrocytic and blood-stage antigens (MSP5, MSP1 block 2, RH4.2, EBA140, and SSP2/TRAP) which levels correlated with protection against clinical malaria (odds ratio [95% confidence interval] 0.53 [0.3-0.93], p = 0.03, for MSP1; 0.52 [0.26-0.98], p = 0.05, for SSP2) in multivariable logistic regression analyses. CONCLUSIONS: Increased antibody responses to specific P. falciparum antigens in subjects immunized with this partially efficacious vaccine upon natural infection may contribute to overall protective immunity against malaria. Inclusion of such antigens in multivalent constructs could result in more efficacious second-generation multistage vaccines.


Assuntos
Anticorpos Antiprotozoários/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Formação de Anticorpos , Antígenos de Protozoários/imunologia , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Plasmodium falciparum/imunologia , Vacinação/métodos
7.
Nat Commun ; 10(1): 2174, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31092823

RESUMO

RTS,S/AS01E has been tested in a phase 3 malaria vaccine study with partial efficacy in African children and infants. In a cohort of 1028 subjects from one low (Bagomoyo) and two high (Nanoro, Kintampo) malaria transmission sites, we analysed IgG plasma/serum concentration and avidity to CSP (NANP-repeat and C-terminal domains) after a 3-dose vaccination against time to clinical malaria events during 12-months. Here we report that RTS,S/AS01E induces substantial increases in IgG levels from pre- to post-vaccination (p < 0.001), higher in NANP than C-terminus (2855 vs 1297 proportional change between means), and higher concentrations and avidities in children than infants (p < 0.001). Baseline CSP IgG levels are elevated in malaria cases than controls (p < 0.001). Both, IgG magnitude to NANP (hazard ratio [95% confidence interval] 0.61 [0.48-0.76]) and avidity to C-terminus (0.07 [0.05-0.90]) post-vaccination are significantly associated with vaccine efficacy. IgG avidity to the C-terminus emerges as a significant contributor to RTS,S/AS01E-mediated protection.


Assuntos
Antígenos de Protozoários/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , África Subsaariana , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Anticorpos Antiprotozoários/isolamento & purificação , Afinidade de Anticorpos/imunologia , Epitopos/imunologia , Feminino , Humanos , Imunogenicidade da Vacina , Lactente , Vacinas Antimaláricas/uso terapêutico , Malária Falciparum/sangue , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Masculino , Resultado do Tratamento
8.
Front Immunol ; 10: 439, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30930896

RESUMO

Naturally acquired immunity (NAI) to Plasmodium falciparum malaria is mainly mediated by IgG antibodies but the subclasses, epitope targets and effector functions have not been unequivocally defined. Dissecting the type and specificity of antibody responses mediating NAI is a key step toward developing more effective vaccines to control the disease. We investigated the role of IgG subclasses to malaria antigens in protection against disease and the factors that affect their levels, including vaccination with RTS,S/AS01E. We analyzed plasma and serum samples at baseline and 1 month after primary vaccination with RTS,S or comparator in African children and infants participating in a phase 3 trial in two sites of different malaria transmission intensity: Kintampo in Ghana and Manhiça in Mozambique. We used quantitative suspension array technology (qSAT) to measure IgG1-4 responses to 35 P. falciparum pre-erythrocytic and blood stage antigens. Our results show that the pattern of IgG response is predominantly IgG1 or IgG3, with lower levels of IgG2 and IgG4. Age, site and RTS,S vaccination significantly affected antibody subclass levels to different antigens and susceptibility to clinical malaria. Univariable and multivariable analysis showed associations with protection mainly for cytophilic IgG3 levels to selected antigens, followed by IgG1 levels and, unexpectedly, also with IgG4 levels, mainly to antigens that increased upon RTS,S vaccination such as MSP5 and MSP1 block 2, among others. In contrast, IgG2 was associated with malaria risk. Stratified analysis in RTS,S vaccinees pointed to novel associations of IgG4 responses with immunity mainly involving pre-erythrocytic antigens upon RTS,S vaccination. Multi-marker analysis revealed a significant contribution of IgG3 responses to malaria protection and IgG2 responses to malaria risk. We propose that the pattern of cytophilic and non-cytophilic IgG antibodies is antigen-dependent and more complex than initially thought, and that mechanisms of both types of subclasses could be involved in protection. Our data also suggests that RTS,S efficacy is significantly affected by NAI, and indicates that RTS,S vaccination significantly alters NAI.


Assuntos
Antígenos de Protozoários/imunologia , Imunoglobulina G/sangue , Vacinas Antimaláricas/administração & dosagem , Plasmodium falciparum/imunologia , Imunidade Adaptativa , Feminino , Humanos , Lactente , Malária/sangue , Malária/imunologia , Malária/prevenção & controle , Masculino , Vacinação
9.
Clin Infect Dis ; 69(5): 820-828, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30380038

RESUMO

BACKGROUND: The effect of timing of exposure to first Plasmodium falciparum infections during early childhood on the induction of innate and adaptive cytokine responses and their contribution to the development of clinical malaria immunity is not well established. METHODS: As part of a double-blind, randomized, placebo-controlled trial in Mozambique using monthly chemoprophylaxis with sulfadoxine-pyrimethamine plus artesunate to selectively control timing of malaria exposure during infancy, peripheral blood mononuclear cells collected from participants at age 2.5, 5.5, 10.5, 15, and 24 months were stimulated ex vivo with parasite schizont and erythrocyte lysates. Cytokine messenger RNA expressed in cell pellets and proteins secreted in supernatants were quantified by reverse-transcription quantitative polymerase chain reaction and multiplex flow cytometry, respectively. Children were followed up for clinical malaria from birth until 4 years of age. RESULTS: Higher proinflammatory (interleukin [IL] 1, IL-6, tumor necrosis factor) and regulatory (IL-10) cytokine concentrations during the second year of life were associated with reduced incidence of clinical malaria up to 4 years of age, adjusting by chemoprophylaxis and prior malaria exposure. Significantly lower concentrations of antigen-specific T-helper 1 (IL-2, IL-12, interferon-γ) and T-helper 2 (IL-4, IL-5) cytokines by 2 years of age were measured in children undergoing chemoprophylaxis compared to children receiving placebo (P < .03). CONCLUSIONS: Selective chemoprophylaxis altering early natural exposure to malaria blood stage antigens during infancy had a significant effect on T-helper lymphocyte cytokine production >1 year later. Importantly, a balanced proinflammatory and anti-inflammatory cytokine signature, probably by innate cells, around age 2 years was associated with protective clinical immunity during childhood. CLINICAL TRIALS REGISTRATION: NCT00231452.


Assuntos
Citocinas/sangue , Leucócitos Mononucleares/imunologia , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Extratos Celulares/farmacologia , Quimioprevenção , Pré-Escolar , Citocinas/imunologia , Método Duplo-Cego , Eritrócitos/química , Humanos , Lactente , Recém-Nascido , Inflamação , Leucócitos Mononucleares/efeitos dos fármacos , Moçambique , Pirimetamina/uso terapêutico , Fatores de Risco , Esquizontes , Sulfadoxina/uso terapêutico , Transcriptoma
10.
BMC Med ; 16(1): 197, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30376866

RESUMO

BACKGROUND: The RTS,S/AS01E vaccine provides partial protection against malaria in African children, but immune responses have only been partially characterized and do not reliably predict protective efficacy. We aimed to evaluate comprehensively the immunogenicity of the vaccine at peak response, the factors affecting it, and the antibodies associated with protection against clinical malaria in young African children participating in the multicenter phase 3 trial for licensure. METHODS: We measured total IgM, IgG, and IgG1-4 subclass antibodies to three constructs of the Plasmodium falciparum circumsporozoite protein (CSP) and hepatitis B surface antigen (HBsAg) that are part of the RTS,S vaccine, by quantitative suspension array technology. Plasma and serum samples were analyzed in 195 infants and children from two sites in Ghana (Kintampo) and Mozambique (Manhiça) with different transmission intensities using a case-control study design. We applied regression models and machine learning techniques to analyze immunogenicity, correlates of protection, and factors affecting them. RESULTS: RTS,S/AS01E induced IgM and IgG, predominantly IgG1 and IgG3, but also IgG2 and IgG4, subclass responses. Age, site, previous malaria episodes, and baseline characteristics including antibodies to CSP and other antigens reflecting malaria exposure and maternal IgGs, nutritional status, and hemoglobin concentration, significantly affected vaccine immunogenicity. We identified distinct signatures of malaria protection and risk in RTS,S/AS01E but not in comparator vaccinees. IgG2 and IgG4 responses to RTS,S antigens post-vaccination, and anti-CSP and anti-P. falciparum antibody levels pre-vaccination, were associated with malaria risk over 1-year follow-up. In contrast, antibody responses to HBsAg (all isotypes, subclasses, and timepoints) and post-vaccination IgG1 and IgG3 to CSP C-terminus and NANP were associated with protection. Age and site affected the relative contribution of responses in the correlates identified. CONCLUSIONS: Cytophilic IgG responses to the C-terminal and NANP repeat regions of CSP and anti-HBsAg antibodies induced by RTS,S/AS01E vaccination were associated with malaria protection. In contrast, higher malaria exposure at baseline and non-cytophilic IgG responses to CSP were associated with disease risk. Data provide new correlates of vaccine success and failure in African children and reveal key insights into the mode of action that can guide development of more efficacious next-generation vaccines.


Assuntos
Anticorpos Antiprotozoários/imunologia , Vacinas contra Hepatite B/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , África , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino
11.
Front Immunol ; 8: 1008, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28878775

RESUMO

Comprehensive assessment of cellular responses to the RTS,S/AS01E vaccine is needed to understand potential correlates and ultimately mechanisms of protection against malaria disease. Cellular responses recognizing the RTS,S/AS01E-containing circumsporozoite protein (CSP) and Hepatitis B surface antigen (HBsAg) were assessed before and 1 month after primary vaccination by intracellular cytokine staining and 16-color flow cytometry in 105 RTS,S/AS01-vaccinated and 74 rabies-vaccinated participants (controls) in a pediatric phase III trial in Africa. RTS,S/AS01E-vaccinated children had significantly higher frequencies of CSP- and HBsAg-specific CD4+ T cells producing IL-2, TNF-α, and CD40L and HBsAg-specific CD4+ T producing IFN-γ and IL-17 than baseline and the control group. Vaccine-induced responses were identified in both central and effector memory (EM) compartments. EM CD4+ T cells expressing IL-4 and IL-21 were detected recognizing both vaccine antigens. Consistently higher response rates to both antigens in RTS,S/AS01E-vaccinated than comparator-vaccinated children were observed. RTS,S/AS01E induced polyfunctional CSP- and HBsAg-specific CD4+ T cells, with a greater degree of polyfunctionality in HBsAg responses. In conclusion, RTS,S/AS01E vaccine induces T cells of higher functional heterogeneity and polyfunctionality than previously characterized. Responses detected in memory CD4+ T cell compartments may provide correlates of RTS,S/AS01-induced immunity and duration of protection in future correlates of immunity studies.

12.
Clin Infect Dis ; 65(5): 746-755, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28505356

RESUMO

BACKGROUND: The RTS,S/AS01E malaria vaccine has moderate efficacy, lower in infants than children. Current efforts to enhance RTS,S/AS01E efficacy would benefit from learning about the vaccine-induced immunity and identifying correlates of malaria protection, which could, for instance, inform the choice of adjuvants. Here, we sought cellular immunity-based correlates of malaria protection and risk associated with RTS,S/AS01E vaccination. METHODS: We performed a matched case-control study nested within the multicenter African RTS,S/AS01E phase 3 trial. Children and infant samples from 57 clinical malaria cases (32 RTS,S/25 comparator vaccinees) and 152 controls without malaria (106 RTS,S/46 comparator vaccinees) were analyzed. We measured 30 markers by Luminex following RTS,S/AS01E antigen stimulation of cells 1 month postimmunization. Crude concentrations and ratios of antigen to background control were analyzed. RESULTS: Interleukin (IL) 2 and IL-5 ratios were associated with RTS,S/AS01E vaccination (adjusted P ≤ .01). IL-5 circumsporozoite protein (CSP) ratios, a helper T cell type 2 cytokine, correlated with higher odds of malaria in RTS,S/AS01E vaccinees (odds ratio, 1.17 per 10% increases of CSP ratios; P value adjusted for multiple testing = .03). In multimarker analysis, the helper T cell type 1 (TH1)-related markers interferon-γ, IL-15, and granulocyte-macrophage colony-stimulating factor protected from subsequent malaria, in contrast to IL-5 and RANTES, which increased the odds of malaria. CONCLUSIONS: RTS,S/AS01E-induced IL-5 may be a surrogate of lack of protection, whereas TH1-related responses may be involved in protective mechanisms. Efforts to develop second-generation vaccine candidates may concentrate on adjuvants that modulate the immune system to support enhanced TH1 responses and decreased IL-5 responses.


Assuntos
Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Células Th1/imunologia , Células Th2/imunologia , Estudos de Casos e Controles , Citocinas/sangue , Humanos , Lactente , Malária Falciparum/epidemiologia , Malária Falciparum/imunologia
13.
Malar J ; 13: 134, 2014 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-24693973

RESUMO

BACKGROUND: Advanced oxidation protein products (AOPP) are newly identified efficient oxidative stress biomarkers. In a longitudinal birth cohort the effects were investigated of genetic polymorphisms in five oxidative pathway genes on AOPP levels. METHODS: This study is part of a three-arm randomized, double-blind, placebo-controlled trial. Three hundred and twelve children were included in the present study with AOPP levels measured at 2.5, 5.5, 10.5, 15 and 24 months of age. Twelve polymorphisms were genotyped in five oxidative stress pathway genes: glutathione reductase (GSR), glutamylcysteine synthetase (GCLC), glutathione S-transferase (GST) P1, haem oxygenase 1 (HMOX1) and superoxide dismutase 2 (SOD2) in 298 children. There were 284 children assessed for anaemia and clinical malaria infection at the age of 24 months. RESULTS: Two principal components (PCA1 and PCA2) were derived from the AOPP levels measured at the five time points. PCA1 was significantly associated with anaemia (p = 0.0002), and PCA2 with clinical malaria infection (p = 0.047). In the K-Means Cluster Analysis based on levels of AOPP, children were clustered into two groups: Group A (lower AOPP levels) and Group B (higher AOPP levels). The cluster membership was significantly associated with anaemia (p =0.003) as well as with the GSR RS3594 polymorphism (p = 0.037). Mixed linear regression analyses found that the single nucleotide polymorphisms GCLC RS10948751 and HMOX1 RS17885925 were significantly associated with AOPP levels (p = 0.030 and p = 0.027, respectively). CONCLUSION: Plasma AOPP levels were predictive for anaemia and oxidative stress markers for clinical malaria infection in two year old children. Several polymorphisms in GCLC, GSR and HMOX1 genes were associated with oxidative stress status of these children.


Assuntos
Produtos da Oxidação Avançada de Proteínas/genética , Anemia/fisiopatologia , Malária Falciparum/fisiopatologia , Estresse Oxidativo , Polimorfismo Genético , Produtos da Oxidação Avançada de Proteínas/sangue , Anemia/parasitologia , Pré-Escolar , Método Duplo-Cego , Feminino , Humanos , Lactente , Estudos Longitudinais , Malária Falciparum/complicações , Malária Falciparum/parasitologia , Masculino , Moçambique , Plasmodium falciparum/fisiologia
14.
Malar J ; 13: 121, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24674654

RESUMO

BACKGROUND: The impact of the age of first Plasmodium falciparum infection on the rate of acquisition of immunity to malaria and on the immune correlates of protection has proven difficult to elucidate. A randomized, double-blind, placebo-controlled trial using monthly chemoprophylaxis with sulphadoxine-pyrimethamine plus artesunate was conducted to modify the age of first P. falciparum erythrocytic exposure in infancy and assess antibodies and malaria risk over two years. METHODS: Participants (n = 349) were enrolled at birth to one of three groups: late exposure, early exposure and control group, and were followed up for malaria morbidity and immunological analyses at birth, 2.5, 5.5, 10.5, 15 and 24 months of age. Total IgG, IgG subclasses and IgM responses to MSP-1(19), AMA-1, and EBA-175 were measured by ELISA, and IgG against variant antigens on the surface of infected erythrocytes by flow cytometry. Factors affecting antibody responses in relation to chemoprophylaxis and malaria incidence were evaluated. RESULTS: Generally, antibody responses did not vary significantly between exposure groups except for levels of IgM to EBA-175, and seropositivity of IgG1 and IgG3 to MSP-1(19). Previous and current malaria infections were strongly associated with increased IgG against MSP-1(19), EBA-175 and AMA-1 (p < 0.0001). After adjusting for exposure, only higher levels of anti-EBA-175 IgG were significantly associated with reduced clinical malaria incidence (IRR 0.67, p = 0.0178). CONCLUSIONS: Overall, the age of first P. falciparum infection did not influence the magnitude and breadth of IgG responses, but previous exposure was critical for antibody acquisition. IgG responses to EBA-175 were the strongest correlate of protection against clinical malaria. TRIAL REGISTRATION: ClinicalTrials.gov: NCT00231452.


Assuntos
Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Malária Falciparum/imunologia , Pirimetamina/uso terapêutico , Sulfadoxina/uso terapêutico , Imunidade Adaptativa , Fatores Etários , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/sangue , Quimioprevenção , Pré-Escolar , Método Duplo-Cego , Ensaio de Imunoadsorção Enzimática , Eritrócitos/imunologia , Eritrócitos/parasitologia , Feminino , Humanos , Incidência , Lactente , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Malária Falciparum/prevenção & controle , Masculino , Moçambique/epidemiologia , Plasmodium falciparum/imunologia , Prevalência
15.
Vaccine ; 32(19): 2209-16, 2014 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-24631081

RESUMO

A primary concern for the RTS,S malaria vaccine candidate is duration of protection. The ongoing Phase III trial reported evidence of waning efficacy within the first year following vaccination. Multiple Phase IIb trials demonstrated early waning of efficacy. The longest duration of protection for RTS,S recorded to date was in a trial of a cohort of 1605 Mozambican children age 1-4 yr at the time of immunization (C1), which showed an overall efficacy against clinical malaria of 30.5% over 43 subsequent months of surveillance. A significant reduction in parasite prevalence in RTS,S vaccinees indicated that the vaccine continued to protect at the end of this period. Although follow-up for recording incident cases of clinical malaria was stopped at 45 months, we were interested in evidence of further durability of protection, and revisited the cohort at 63 months, recording the secondary trial endpoint, prevalence of asexual Plasmodium falciparum parasitemia, in the RTS,S and comparator vaccine groups as a proxy for efficacy. As a comparator, we also visited the contemporaneous cohort of 417 children (C2), which showed waning efficacy after 6 months of follow-up. We also assessed anti-circumsporozoite antibody titers. These results were compared with those of other Phase IIb trials. Prevalence of parasitemia was not significantly lower in the RTS,S/AS02 group compared to comparator groups in C1 (57 [119%] Vs 62 [128%]; p=0.696) or C2 (30 [226%] Vs 35 [276%]; p=0.391), despite elevated antibody titers, suggesting that protection did not extend to 5 years after vaccination. This is in contrast to the earlier assessment of parasitemia in C1, where a 34% lower prevalence of parasitemia was observed in the RTS,S/AS02 group at month 45. Comparison with other Phase II trials highlights a complex relationship between efficacy, age and transmission intensity. RTS,S/AS02 provided partial protection from clinical malaria for at least 3.5 years in C1. Duration of protection may depend on environmental circumstances, such as changing malaria transmission, and special attention should be given in the Phase III trial to identifying factors that modify longevity of protection.


Assuntos
Anticorpos Antiprotozoários/sangue , Vacinas Antimaláricas/uso terapêutico , Malária Falciparum/prevenção & controle , Parasitemia/prevenção & controle , Criança , Pré-Escolar , Ensaios Clínicos Fase II como Assunto , Ensaios Clínicos Fase III como Assunto , Estudos Transversais , Seguimentos , Humanos , Imunoglobulina G/sangue , Lactente , Vacinas Antimaláricas/imunologia , Moçambique , Plasmodium falciparum , Ensaios Clínicos Controlados Aleatórios como Assunto
16.
PLoS One ; 8(1): e52587, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23300981

RESUMO

BACKGROUND: Cytokines and chemokines are relevant biomarkers of pathology and immunity to infectious diseases such as malaria. Several commercially available kits based on quantitative suspension array technologies allow the profiling of multiple cytokines and chemokines in small volumes of sample. However, kits are being continuously improved and information on their performance is lacking. METHODOLOGY/PRINCIPAL FINDINGS: Different cytokine/chemokine kits, two flow cytometry-based (eBioscience® FlowCytomix™ and BD™ Cytometric Bead Array Human Enhanced Sensitivity) and four Luminex®-based (Invitrogen™ Human Cytokine 25-Plex Panel, Invitrogen™ Human Cytokine Magnetic 30-Plex Panel, Bio-Rad® Bio-Plex Pro™ Human Cytokine Plex Assay and Millipore™ MILLIPLEX® MAP Plex Kit) were compared. Samples tested were supernatants of peripheral blood mononuclear cells of malaria-exposed children stimulated with Plasmodium falciparum parasite lysates. Number of responses in range that could be detected was determined and reproducibility of duplicates was evaluated by the Bland-Altman test. Luminex® kits performed better than flow cytometry kits in number of responses in range and reproducibility. Luminex® kits were more reproducible when magnetic beads were used. However, within each methodology overall performance depended on the analyte tested in each kit. Within the Luminex® kits, the Invitrogen™ with polystyrene beads had the poorer performance, whereas Invitrogen™ with magnetic beads had the higher percentage of cytokines/chemokines with both readings in range (40%), followed by Bio-Rad® with magnetic beads (35%). Regarding reproducibility, the Millipore™ kit had the highest percentage (60%) of cytokines/chemokines with acceptable limits of agreement (<30%), followed by the Invitrogen™ with magnetic beads (40%) that had tighter limits of agreement. CONCLUSIONS/SIGNIFICANCE: Currently available kits for cytokine and chemokine quantification differ in reproducibility and concentration range of accurate detection. Luminex®-based kits with magnetic beads perform the best. Data highlights the importance of testing different kits before each study to choose the most appropriate, depending on the priority of the cytokines assessed.


Assuntos
Quimiocinas/metabolismo , Citocinas/metabolismo , Eritrócitos/parasitologia , Plasmodium falciparum/metabolismo , Kit de Reagentes para Diagnóstico/normas , Biomarcadores/metabolismo , Criança , Citometria de Fluxo , Humanos , Interleucina-10/sangue , Interleucina-2/sangue , Leucócitos Mononucleares/citologia , Magnetismo , Malária/diagnóstico , Reprodutibilidade dos Testes , Fatores de Tempo
17.
J Clin Microbiol ; 49(3): 968-74, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21227985

RESUMO

The detection and quantification of Plasmodium falciparum in studies of malaria endemicity primarily relies upon microscopy. High-throughput quantitative methods with less subjectivity and greater reliability are needed for investigational studies. The staining of parasitized erythrocytes with YOYO-1 for flow cytometry bears great potential as a tool for assessing malaria parasite burden. Capillary blood was collected from children presenting to the pediatric ward of the Manhiça District Hospital in Mozambique for parasitemia assessment by thick and thin blood films, flow cytometry (YOYO-1(530/585)), and quantitative real-time PCR (qRT-PCR). Whole blood was fixed and stained with YOYO-1 for acquisition on a cytometer to assess the frequency of infected erythrocyte events. qRT-PCR was used as the gold standard for the detection of P. falciparum. The YOYO-1(530/585) method was as sensitive and specific as conventional microscopy (area under the receiver operating characteristic, 0.9 for both methods). The interrater mean difference for YOYO-1(530/585) was near zero. Parasite density using flow cytometry and complete blood counts returned density estimates with a mean difference 2.2 times greater than results by microscopy (confidence interval, 1.46 to 3.60) but with limits of agreement between 10 times lower and 50 times higher than those of microscopy. The YOYO-1(530/585) staining pattern was established exactly as demonstrated in animal models, but the assay was limited by the lack of appropriate negative-control samples for establishing background levels and the definition of positives in areas in which malaria is endemic. YOYO-1(530/585) is a high-throughput tool with great potential if the limitations of negative controls and heterogeneous levels of background signal can be overcome.


Assuntos
Citometria de Fluxo/métodos , Malária Falciparum/parasitologia , Parasitemia/diagnóstico , Parasitologia/métodos , Plasmodium falciparum/isolamento & purificação , Benzoxazóis/metabolismo , Pré-Escolar , Eritrócitos/parasitologia , Fluorescência , Humanos , Lactente , Moçambique , Compostos de Quinolínio/metabolismo , Coloração e Rotulagem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA