Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1439351, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39279997

RESUMO

Background: Endogenous insulin supplementation is essential for individuals with type 1 diabetes (T1D). However, current treatments, including pancreas transplantation, insulin injections, and oral medications, have significant limitations. The development of engineered cells that can secrete endogenous insulin offers a promising new therapeutic strategy for type 1 diabetes (T1D). This approach could potentially circumvent autoimmune responses associated with the transplantation of differentiated ß-cells or systemic delivery of viral vectors. Methods: We utilized CRISPR/Cas9 gene editing coupled with homology-directed repair (HDR) to precisely integrate a promoter-free EMCVIRES-insulin cassette into the 3' untranslated region (UTR) of the GAPDH gene in human HEK-293T cells. Subsequently quantified insulin expression levels in these engineered cells, the viability and functionality of the engineered cells when seeded on different cell vectors (GelMA and Cytopore I) were also assessed. Finally, we investigated the therapeutic potential of EMCVIRES-based insulin secretion circuits in reversing Hyperglycaemia in T1D mice. Result: Our results demonstrate that HDR-mediated gene editing successfully integrated the IRES-insulin loop into the genome of HEK-293T cells, a non-endocrine cell line, enabling the expression of human-derived insulin. Furthermore, Cytopore I microcarriers facilitated cell attachment and proliferation during in vitro culture and enhanced cell survival post-transplantation. Transplantation of these cell-laden microcarriers into mice led to the development of a stable, fat-encapsulated structure. This structure exhibited the expression of the platelet-endothelial cell adhesion molecule CD31, and no significant immune rejection was observed throughout the experiment. Diabetic mice that received the cell carriers reversed hyperglycemia, and blood glucose fluctuations under simulated feeding stimuli were very similar to those of healthy mice. Conclusion: In summary, our study demonstrates that Cytopore I microcarriers are biocompatible and promote long-term cell survival in vivo. The promoter-free EMCVIRES-insulin loop enables non-endocrine cells to secrete mature insulin, leading to a rapid reduction in glucose levels. We have presented a novel promoter-free genetic engineering strategy for insulin secretion and proposed an efficient cell transplantation method. Our findings suggest the potential to expand the range of cell sources available for the treatment of diabetes, offering new avenues for therapeutic interventions.


Assuntos
Diabetes Mellitus Tipo 1 , Edição de Genes , Hiperglicemia , Células Secretoras de Insulina , Insulina , Humanos , Animais , Hiperglicemia/terapia , Hiperglicemia/metabolismo , Camundongos , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Insulina/genética , Células HEK293 , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/genética , Edição de Genes/métodos , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genética , Sítios Internos de Entrada Ribossomal/genética , Regiões Promotoras Genéticas , Sistemas CRISPR-Cas
2.
Front Endocrinol (Lausanne) ; 15: 1429662, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39229371

RESUMO

Background: To investigate the association between oxidative balance score (OBS), cardiovascular mortality (CVM), and all-cause mortality (ACM) in type 2 diabetes mellitus (T2DM) patients. Methods: We included 6,119 participants with T2DM from the 2005-2020 National Health and Nutrition Examination Surveys (NHANES). The status of CVM and ACM of participants was followed through December 31, 2019. Multivariable Cox regression models, Kaplan-Meier curves, log-rank test, restricted cubic spline regression, and subgroup analysis, were used to evaluate the relationship between OBS, CVM, and ACM. Results: During a median of 100.9 months follow-up, 1,790 ACM cases had occurred, 508 of which were due to cardiovascular disease. The T2DM participants were divided into four groups based on the quartiles of OBS. Participants with Q4 tended to be younger, financially better-off, married, highly educated, had lower alcohol consumption rates, were non-smokers, and exhibited a lower likelihood of ACM and CVM. In multivariate Cox regression models, compared with the patients with Q4, those with Q1 had a 30% increased risk for ACM (Q1, reference; Q4, HR: 0.70, 95%CI: 0.58-0.86) and a 43% increased risk for CVM (Q1, reference; Q4, HR: 0.57, 95%CI: 0.36-0.88). The restricted cubic spline regression models have no nonlinear relationship between OBS, CVM, and ACM. Kaplan-Meier survival curves showed that patients with Q4 had a lower risk of ACM and CVM (log-rank P < 0.05). Conclusions: We find that ACM and CVM increase with higher OBS in T2DM patients. Moreover, there are linear relationships between OBS, ACM, and CVM.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Inquéritos Nutricionais , Humanos , Diabetes Mellitus Tipo 2/mortalidade , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/complicações , Feminino , Masculino , Doenças Cardiovasculares/mortalidade , Pessoa de Meia-Idade , Idoso , Estresse Oxidativo , Seguimentos , Fatores de Risco , Adulto , Causas de Morte
3.
Diabet Med ; 41(6): e15279, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38185936

RESUMO

AIMS: Evidence is accumulating of the therapeutic benefits of mesenchymal stromal cells (MSCs) in diabetes-related conditions. We have identified a novel population of stromal cells within islets of Langerhans - islet stellate cells (ISCs) - which have a similar morphology to MSCs. In this study we characterize mouse ISCs and compare their morphology and function to MSCs to determine whether ISCs may also have therapeutic potential in diabetes. METHODS: ISCs isolated from mouse islets were compared to mouse bone marrow MSCs by analysis of cell morphology; expression of cell-surface markers and extracellular matrix (ECM) components; proliferation; apoptosis; paracrine activity; and differentiation into adipocytes, chondrocytes and osteocytes. We also assessed the effects of co-culture with ISCs or MSCs on the insulin secretory capacity of islet beta cells. RESULTS: Although morphological similar, ISCs were functionally distinct from MSCs. Thus, ISCs were less proliferative and more apoptotic; they had different expression levels of important paracrine factors; and they were less efficient at differentiation down multiple lineages. Co-culture of mouse islets with ISCs enhanced glucose induced insulin secretion more effectively than co-culture with MSCs. CONCLUSIONS: ISCs are a specific sub-type of islet-derived stromal cells that possess biological behaviors distinct from MSCs. The enhanced beneficial effects of ISCs on islet beta cell function suggests that they may offer a therapeutic target for enhancing beta cell functional survival in diabetes.


Assuntos
Diferenciação Celular , Técnicas de Cocultura , Células Secretoras de Insulina , Ilhotas Pancreáticas , Células-Tronco Mesenquimais , Animais , Camundongos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/fisiologia , Células Secretoras de Insulina/citologia , Diferenciação Celular/fisiologia , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Células Estreladas do Pâncreas/metabolismo , Células Estreladas do Pâncreas/fisiologia , Proliferação de Células/fisiologia , Insulina/metabolismo , Células Cultivadas , Secreção de Insulina/fisiologia , Camundongos Endogâmicos C57BL , Masculino , Apoptose/fisiologia
4.
iScience ; 26(6): 106988, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37378313

RESUMO

Pancreatic stellate cells (PSCs) are suggested to play an important role in the development of pancreas and islet fibrosis. However, the precise contributions and solid in vivo evidence of PSCs to the fibrogenesis remain to be elucidated. Here, we developed a novel fate-tracing strategy for PSCs by vitamin A administration in Lrat-cre; Rosa26-tdTomato transgenic mouse. The results showed that stellate cells give rise to 65.7% of myofibroblasts in cerulein-induced pancreatic exocrine fibrosis. In addition, stellate cells in islets increase and contribute partly to myofibroblasts pool in streptozocin-induced acute or chronic islet injury and fibrosis. Furthermore, we substantiated the functional contribution of PSCs to fibrogenesis of pancreatic exocrine and islet in PSCs ablated mice. We also found stellate cells' genetic ablation can improve pancreatic exocrine but not islet fibrosis. Together, our data indicates that stellate cells are vital/partial contributors to myofibroblasts in pancreatic exocrine/islet fibrosis.

5.
Biomed Res Int ; 2022: 4581405, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845956

RESUMO

Aims: We explored whether and how perilipin 2 (Plin2) protected islets against lipotoxicity-induced islet dysfunction by regulating islet stellate cells (ISCs) activation. Methods: Six-week-old male rats were given a high-fat diet or a control diet for 28 weeks. Glucose metabolic phenotypes were assessed using glucose/insulin tolerance tests, masson, and immunohistochemical staining. ISCs activation levels were assessed from rats and palmitic acid- (PA-) treated cultured ISCs by immunofluorescence, Oil red O staining, electron microscopy, quantitative PCR, and western blotting. Changes in ISCs phenotype of activation degree and its underlying mechanisms were assessed by target gene lentiviral infection, high-performance liquid chromatography (HPLC), and western blotting. Results: Obese rats showed glucose intolerance, decreased endocrine hormone profiles, and elevated expression of α-smooth muscle actin (α-SMA), a polygonal appearance without cytoplasmic lipid droplets of ISCs in rats and isolated islets. PA-treated cultured ISCs exhibited faster proliferation and migration abilities with the induction of mRNA levels of lipid metabolism proteins, especially Plin2. The overexpression of Plin2 resulted in ISCs "re-quiescent" phenotypes associated with inhibition of the Smad3-TGF-ß signaling pathways. Conclusions: Our observations suggest a protective role of Plin2 in weakening ISCs activation. It may serve as a novel therapeutic target for preventing islet fibrosis for T2DM.


Assuntos
Glucose , Células Estreladas do Pâncreas , Animais , Fibrose , Glucose/metabolismo , Masculino , Perilipina-2/metabolismo , Fenótipo , Ratos
6.
Front Endocrinol (Lausanne) ; 12: 695467, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566887

RESUMO

Background: It has been demonstrated that activated islet stellate cells (ISCs) play a critical role in islet fibrogenesis and significantly contribute to the progression of type 2 diabetes mellitus. However, the key molecules responsible for ISCs activation have not yet been determined. This study aimed to identify the potential key genes involved in diabetes-induced activation of ISCs. Method: Stellate cells were isolated from three 10-week-old healthy male Wistar rats and three Goto-Kakizaki (GK) rats. Cells from each rat were primary cultured under the same condition. A Genome-wide transcriptional sequence of stellate cells was generated using the Hiseq3000 platform. The identified differentially expressed genes were validated using quantitative real-time PCR and western blotting in GK rats, high fat diet (HFD) rats, and their controls. Results: A total of 204 differentially expressed genes (DEGs) between GK. ISCs and Wistar ISCs (W.ISCs) were identified, accounting for 0.58% of all the 35,362 genes detected. After the Gene Ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses, the mRNA levels of these genes were further confirmed by real-time PCR in cultured ISCs. We then selected Fos, Pdpn, Bad as the potential key genes for diabetes-induced activation of ISCs. Finally, we confirmed the protein expression levels of FOS, podoplanin, and Bad by western blotting and immunofluorescence in GK rats, HFD rats, and their controls. The results showed that the expression level of FOS was significantly decreased, while podoplanin and Bad were significantly increased in GK.ISCs and HFD rats compared with controls, which were consistent with the expression of α-smooth muscle actin. Conclusions: A total of 204 DEGs were found between the GK.ISCs and W.ISCs. After validating the expression of potential key genes from GK rats and HFD rats, Fos, Pdpn, and Bad might be potential key genes involved in diabetes-induced activation of ISCs.


Assuntos
Ilhotas Pancreáticas/fisiologia , Pâncreas/patologia , Células Estreladas do Pâncreas/fisiologia , Transcriptoma , Animais , Proliferação de Células/genética , Células Cultivadas , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Progressão da Doença , Fibrose/genética , Ilhotas Pancreáticas/metabolismo , Masculino , Especificidade de Órgãos/genética , Pâncreas/metabolismo , Células Estreladas do Pâncreas/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Wistar
7.
Technol Cancer Res Treat ; 20: 15330338211038142, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34510990

RESUMO

BACKGROUND: The prognostic significance of podoplanin (PDPN) in tumor cells for cancer patients' survival remains controversial. Therefore, we performed this meta-analysis to clarify the relationship between the podoplanin-positive tumor cells and cancer prognosis. METHOD: Eligible studies were identified by searching the Pubmed and EBSCO online databases up to August 2019. Hazard ratios (HRs) with 95% confidence intervals (CIs) were calculated to evaluate the correlation between podoplanin expression and overall survival (OS) and/or disease-free survival (DFS) and odds ratios (ORs) with 95% CIs severed as the summarized statistics for clinicopathological characteristic. RESULTS: A total of 2155 patients from 21 eligible studies were included. The results revealed that high expression of podoplanin was associated with a poor survival rate in cancer patients. Further subgroup analysis stratified by tumor type showed that podoplanin-positive tumor cell infiltration had a negative prognostic effect associated with survival in esophageal cancer and oropharyngeal cancer. In addition, high expression of these cells was significantly associated with N stage, T stage, TNM stage and vascular invasion. CONCLUSION: Our study suggests the over-expression of podoplanin might be a significant prognostic indicator for patients with esophageal and oropharyngeal cancer.


Assuntos
Biomarcadores Tumorais , Expressão Gênica , Glicoproteínas de Membrana/genética , Neoplasias/genética , Neoplasias/mortalidade , Humanos , Glicoproteínas de Membrana/metabolismo , Neoplasias/diagnóstico , Razão de Chances , Prognóstico , Modelos de Riscos Proporcionais , Viés de Publicação
8.
Front Cell Infect Microbiol ; 11: 665406, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34350129

RESUMO

Gut microbiota has been proved to be involved in the occurrence and development of many diseases, such as type 2 diabetes, obesity, coronary heart disease, etcetera. It provides a new idea for the pathogenesis of polycystic ovary syndrome (PCOS). Our study showed that the gut microbial community of PCOS with high low-density lipoprotein cholesterol (LDLC) has a noticeable imbalance. Gut microbiota of PCOS patients was significantly changed compared with CON, and these changes were closely related to LDLC. Gut microbiota may affect the metabolic level of PCOS patients through multiple metabolic pathways, and lipid metabolism disorder may further aggravate the imbalance of gut microbiota. Actinomycetaceae, Enterobacteriaceae and Streptococcaceae had high accuracy in the diagnosis of PCOS and the differentiation of subgroups, suggesting that they may play an important role in the diagnosis and treatment of PCOS in the future. Also, the model we built showed good specificity and sensitivity for distinguishing PCOS from CON (including L_CON and L_PCOS, H_CON and H_PCOS). In conclusion, this is the first report on the gut microbiota of PCOS with high LDLC, suggesting that in the drug development or treatment of PCOS patients, the difference of gut microbiota in PCOS patients with different LDLC levels should be fully considered.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Síndrome do Ovário Policístico , Colesterol , HDL-Colesterol , LDL-Colesterol , Feminino , Humanos
9.
J Zhejiang Univ Sci B ; 21(2): 155-165, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32115912

RESUMO

Painful diabetic neuropathy (PDN) is a diabetes mellitus complication. Unfortunately, the mechanisms underlying PDN are still poorly understood. Adenosine triphosphate (ATP)-gated P2X7 receptor (P2X7R) plays a pivotal role in non-diabetic neuropathic pain, but little is known about its effects on streptozotocin (STZ)-induced peripheral neuropathy. Here, we explored whether spinal cord P2X7R was correlated with the generation of mechanical allodynia (MA) in STZ-induced type 1 diabetic neuropathy in mice. MA was assessed by measuring paw withdrawal thresholds and western blotting. Immunohistochemistry was applied to analyze the protein expression levels and localization of P2X7R. STZ-induced mice expressed increased P2X7R in the dorsal horn of the lumbar spinal cord during MA. Mice injected intrathecally with a selective antagonist of P2X7R and P2X7R knockout (KO) mice both presented attenuated progression of MA. Double-immunofluorescent labeling demonstrated that P2X7R-positive cells were mostly co-expressed with Iba1 (a microglia marker). Our results suggest that P2X7R plays an important role in the development of MA and could be used as a cellular target for treating PDN.


Assuntos
Diabetes Mellitus Tipo 1/complicações , Neuropatias Diabéticas/etiologia , Hiperalgesia/etiologia , Receptores Purinérgicos P2X7/fisiologia , Medula Espinal/fisiologia , Estreptozocina/farmacologia , Acetamidas/farmacologia , Animais , Diabetes Mellitus Experimental/complicações , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Quinolinas/farmacologia
10.
J Zhejiang Univ Sci B ; 21(2): 166-171, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32115913

RESUMO

Patients with diabetic peripheral neuropathy experience debilitating pain that significantly affects their quality of life (Abbott et al., 2011), by causing sleeping disorders, anxiety, and depression (Dermanovic Dobrota et al., 2014). The primary clinical manifestation of painful diabetic neuropathy (PDN) is mechanical hypersensitivity, also known as mechanical allodynia (MA) (Callaghan et al., 2012). MA's underlying mechanism remains poorly understood, and so far, based on symptomatic treatment, it has no effective therapy (Moore et al., 2014).


Assuntos
Receptor 1 de Quimiocina CX3C/fisiologia , Diabetes Mellitus Tipo 1/complicações , Neuropatias Diabéticas/etiologia , Hiperalgesia/etiologia , Medula Espinal/fisiologia , Estreptozocina/farmacologia , Animais , Receptor 1 de Quimiocina CX3C/antagonistas & inibidores , Quimiocina CX3CL1/fisiologia , Diabetes Mellitus Experimental/complicações , Camundongos , Camundongos Endogâmicos C57BL
11.
Trials ; 21(1): 169, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32046752

RESUMO

BACKGROUND: Polycystic ovary syndrome (PCOS) is a complex endocrine syndrome with poorly understood mechanisms. To provide patients with PCOS with individualized therapy, it is critical to precisely diagnose the phenotypes of the disease. However, the criteria for diagnosing the different phenotypes are mostly based on symptoms, physical examination and laboratory results. This study aims to compare the accuracy and efficacy of diagnosing PCOS by integrating metabolomic markers with common clinical characteristics. METHODS: This is a prospective, multicenter, analyst-blinded, randomized controlled trial. Participants will be grouped into (1) people without PCOS (healthy control group), (2) patients diagnosed with PCOS based on clinical indices (experimental group 1), and (3) patients diagnosed with PCOS based on metabolomic indices (experimental group 2). A total of 276 participants, including 60 healthy people and 216 patients with PCOS, will be recruited. The 216 patients with PCOS will be randomly assigned to the two experimental groups in a 1:1 ratio, and each group will receive a different 6-month treatment. The primary outcome for the experimental groups will be the effect of PCOS treatment. DISCUSSION: The results of this trial should help to determine whether using metabolomic indices is more accurate and effective than using clinical characteristics in diagnosing the phenotypes of PCOS. The results could provide a solid foundation for the accurate diagnosis of different PCOS subgroups and for future research on individualized PCOS therapy. TRIAL REGISTRATION: Chinese Clinical Trial Registry, ID: ChiCTR-INR-1800016346. Registered 26 May 2018.


Assuntos
Metabolômica , Síndrome do Ovário Policístico/diagnóstico , Adolescente , Adulto , Biomarcadores/sangue , Biomarcadores/metabolismo , Feminino , Hormônios/metabolismo , Humanos , Metabolismo dos Lipídeos , Pessoa de Meia-Idade , Estudos Multicêntricos como Assunto , Exame Físico , Síndrome do Ovário Policístico/sangue , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/terapia , Estudos Prospectivos , Ensaios Clínicos Controlados Aleatórios como Assunto , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA