RESUMO
Identifying compounds of interest for peaks in data generated by comprehensive two-dimensional gas chromatography (GC x GC) is a critical analytical task. Manually identifying compounds is tedious and time-consuming. An alternative is to use pattern matching. Pattern matching identifies compounds by matching previously observed patterns with known peaks to newly observed patterns with unidentified peaks. The fundamental difficulty of pattern matching comes from peak pattern distortions that are caused by differences in data acquisition conditions. This paper investigates peak pattern variations related to varying oven temperature ramp rate and inlet gas pressure and evaluates two types of affine transformations for matching peak patterns. The experimental results suggest that, over the experimental ranges, the changes in temperature ramp rate generate non-linear pattern variations and changes in gas pressure generate nearly linear pattern variations. The results indicate the affine transformations can largely remove the pattern variations and can be used for applications such as pattern matching and normalizing retention times to retention indices.
Assuntos
Cromatografia Gasosa/métodos , Modelos Teóricos , TemperaturaRESUMO
This paper describes a language for expressing criteria for chemical identification with comprehensive two-dimensional gas chromatography paired with mass spectrometry (GC x GC-MS) and presents computer-based tools implementing the language. The Computer Language for Indentifying Chemicals (CLIC) allows expressions that describe rules (or constraints) for selecting chemical peaks or data points based on multi-dimensional chromatographic properties and mass spectral characteristics. CLIC offers chromatographic functions of retention times, functions of mass spectra, numbers for quantitative and relational evaluation, and logical and arithmetic operators. The language is demonstrated with the compound-class selection rules described by Welthagen et al. [W. Welthagen, J. Schnelle-Kreis, R. Zimmermann, J. Chromatogr. A 1019 (2003) 233-249]. A software implementation of CLIC provides a calculator-like graphical user-interface (GUI) for building and applying selection expressions. From the selection calculator, expressions can be used to select chromatographic peaks that meet the criteria or create selection chromatograms that mask data points inconsistent with the criteria. Selection expressions can be combined with graphical, geometric constraints in the retention-time plane as a powerful component for chemical identification with template matching or used to speed and improve mass spectrum library searches.
Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Linguagens de ProgramaçãoRESUMO
This paper describes a new technique for removing the background level from digital images produced in comprehensive two-dimensional gas chromatography (GCxGC). Background removal is an important first step in the larger problem of quantitative analysis. The approach estimates the background level across the chromatographic image based on structural and statistical properties of GCxGC data. Then, the background level is subtracted from the image, producing a chromatogram in which the peaks rise above a near-zero mean background. After the background level is removed, further analysis is required to determine the quantitative relationship between the peaks and chemicals in the sample. The algorithm is demonstrated experimentally to be effective at determining and removing the background level from GCxGC images. The algorithm has several parametric controls and is incorporated into an interactive program with graphical interface for rapid and accurate detection of GCxGC peaks.