Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11237, 2024 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755283

RESUMO

Osteoarthritis (OA) is the most prevalent form of arthritis, characterized by a complex pathogenesis. One of the key factors contributing to its development is the apoptosis of chondrocytes triggered by oxidative stress. Involvement of peroxisome proliferator-activated receptor gamma (PPARγ) has been reported in the regulation of oxidative stress. However, there remains unclear mechanisms that through which PPARγ influences the pathogenesis of OA. The present study aims to delve into the role of PPARγ in chondrocytes apoptosis induced by oxidative stress in the context of OA. Primary human chondrocytes, both relatively normal and OA, were isolated and cultured for the following study. Various assessments were performed, including measurements of cell proliferation, viability and cytotoxicity. Additionally, we examined cell apoptosis, levels of reactive oxygen species (ROS), nitric oxide (NO), mitochondrial membrane potential (MMP) and cytochrome C release. We also evaluated the expression of related genes and proteins, such as collagen type II (Col2a1), aggrecan, inducible nitric oxide synthase (iNOS), caspase-9, caspase-3 and PPARγ. Compared with relatively normal cartilage, the expression of PPARγ in OA cartilage was down-regulated. The proliferation of OA chondrocytes decreased, accompanied by an increase in the apoptosis rate. Down-regulation of PPARγ expression in OA chondrocytes coincided with an up-regulation of iNOS expression, leading to increased secretion of NO, endogenous ROS production, and decrease of MMP levels. Furthermore, we observed the release of cytochrome C, elevated caspase-9 and caspase-3 activities, and reduction of the components of extracellular matrix (ECM) Col2a1 and aggrecan. Accordingly, utilization of GW1929 (PPARγ Agonists) or Z-DEVD-FMK (caspase-3 inhibitor) can protect chondrocytes from mitochondrial-related apoptosis and alleviate the progression of OA. During the progression of OA, excessive oxidative stress in chondrocytes leads to apoptosis and ECM degradation. Activation of PPARγ can postpone OA by down-regulating caspase-3-dependent mitochondrial apoptosis pathway.


Assuntos
Apoptose , Caspase 3 , Condrócitos , Mitocôndrias , Osteoartrite , PPAR gama , Espécies Reativas de Oxigênio , Humanos , Condrócitos/metabolismo , Condrócitos/patologia , PPAR gama/metabolismo , Caspase 3/metabolismo , Osteoartrite/metabolismo , Osteoartrite/patologia , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo , Potencial da Membrana Mitocondrial , Proliferação de Células , Óxido Nítrico/metabolismo , Células Cultivadas , Pessoa de Meia-Idade , Idoso , Feminino , Masculino
2.
J Tissue Eng ; 15: 20417314241231452, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361536

RESUMO

Osteogenesis is caused by multiple factors, and the inflammatory response, osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), regeneration of blood vessels, and other factors must be considered in bone tissue engineering. To effectively repair bone defect, it is important to decrease excessive inflammation, enhance the differentiation of mesenchymal stem cells into osteoblasts, and stimulate angiogenesis. Herein, nano-attapulgite (ATP), polyvinyl alcohol (PVA), and gelatin (GEL) scaffolds were produced using 3D printing technology and pioglitazone (PIO)-containing polylactic acid-glycolic acid (PLGA) nanospheres were added. In both in vitro and in vivo studies, material scaffolds with PIO-loaded polylactic acid-glycolic acid nanospheres could reduce the inflammatory response by encouraging macrophage polarization from M1 to M2 and promoting the osteogenic differentiation of BMSCs by activating the BMP2/Smad/RUNX2 signal pathway to repair bone defects. The vascularization of human umbilical vein endothelial cells (HUVECs) through the PI3K/AKT/HIF1-/VEGF pathway was also encouraged. In vivo research using PIO-containing PLGA nanospheres revealed massive collagen deposition in skin models. These findings indicate a potentially effective scaffold for bone healing, when PLGA nanospheres-which contain the drug PIO-are combined with ATP/PVA/GEL scaffolds.

3.
Inflammopharmacology ; 32(2): 1277-1294, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38407703

RESUMO

OBJECTIVE: Ferroptosis has been reported to play a role in rheumatoid arthritis (RA). Sulfasalazine, a common clinical treatment for ankylosing spondylitis, also exerts pathological influence on the progression of rheumatoid arthritis including the induced ferroptosis of fibroblast-like synoviocytes (FLSs), which result in the perturbated downstream signaling and the development of RA. The aim of this study was to investigate the underlying mechanism so as to provide novel insight for the treatment of RA. METHODS: CCK-8 and Western blotting were used to assess the effect of sulfasalazine on FLSs. A collagen-induced arthritis mouse model was constructed by the injection of collagen and Freund's adjuvant, and then, mice were treated with sulfasalazine from day 21 after modeling. The synovium was extracted and ferroptosis was assessed by Western blotting and immunofluorescence staining. RESULTS: The results revealed that sulfasalazine promotes ferroptosis. Compared with the control group, the expression levels of ferroptosis-related proteins such as glutathione peroxidase 4, ferritin heavy chain 1, and solute carrier family 7, member 11 (SLC7A11) were lower in the experimental group. Furthermore, deferoxamine inhibited ferroptosis induced by sulfasalazine. Sulfasalazine-promoted ferroptosis was related to a decrease in ERK1/2 and the increase of P53. CONCLUSIONS: Sulfasalazine promoted ferroptosis of FLSs in rheumatoid arthritis, and the PI3K-AKT-ERK1/2 pathway and P53-SLC7A11 pathway play an important role in this process.


Assuntos
Artrite Reumatoide , Ferroptose , Camundongos , Animais , Sulfassalazina/farmacologia , Sulfassalazina/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Sistema de Sinalização das MAP Quinases , Fosfatidilinositol 3-Quinases/metabolismo , Artrite Reumatoide/metabolismo , Células Cultivadas , Proliferação de Células
4.
Int Dent J ; 74(1): 58-65, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37517936

RESUMO

OBJECTIVE: The aim of this work was to explore the association between Aggregatibacter actinomycetemcomitans (A actinomycetemcomitans) infection and disease activity amongst those with rheumatoid arthritis (RA) with or without periodontitis (PD) in a Chinese population. METHODS: A case-control study was conducted from November 2017 to March 2019. The correlation coefficients between A actinomycetemcomitans positivity and RA-related examination indicators as well as periodontal examination parameters were calculated by using the Spearman correlation analysis. RESULTS: A total of 115 patients with RA were recruited: 67 patients with RA only and 48 with RA + PD. The percentage of A actinomycetemcomitans positivity was significantly higher in the RA + PD group compared with the RA-only group (P = .007 for positive percentage; P = .020 for percentage of A actinomycetemcomitans positivity in the total oral microbiome). Furthermore, RA-related measures such as Disease Activity Score 28, rheumatoid factor, anticyclic citrullinated peptide, and anticitrullinated protein antibodies were all positively correlated with the percentage of A actinomycetemcomitans positivity (P range: .002∼.041). In addition, significant correlations were observed amongst A actinomycetemcomitans positivity and probing pocket depth (P = .027) and gingival index (P = .043), whereas null correlations were found amongst the percentage of A actinomycetemcomitans positivity and plaque index (P = .344), clinical attachment loss (P = .217), and bleeding on probing (P = .710). CONCLUSIONS: A actinomycetemcomitans infection may be related to the development of PD amongst patients with RA.


Assuntos
Artrite Reumatoide , Periodontite , Humanos , Aggregatibacter actinomycetemcomitans , Estudos de Casos e Controles , Periodontite/complicações , Artrite Reumatoide/complicações , Perda da Inserção Periodontal
5.
ACS Biomater Sci Eng ; 10(1): 455-467, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38146624

RESUMO

Nanoattapulgite (nano-ATP), a magnesium-aluminum silicate clay, can absorb substances and is a suitable material for bone repair and regeneration. In this study, using three-dimensional printing technology, a nano-ATP/polycaprolactone (PCL) scaffold was fabricated and modified using NaOH to form a rough surface. Biomimetic hydroxyapatite (HA) on nano-ATP/PCL scaffolds was fabricated using a biomineralized approach. The scaffold provided structural support through PCL and was modified with ATP and HA to improve hydrophilicity and promote the delivery of nutrients. The biocompatibility and osteogenic induction of scaffolds were assessed in vitro using mouse bone marrow mesenchymal stem cells. According to the in vitro study results, the nano-ATP/PCL/HA composite scaffold significantly boosted the expression levels of genes related to osteogenesis (p < 0.05), attributed to its superior alkaline phosphatase activity and calcium deposition capabilities. The outcomes of in vivo experimentation demonstrated an augmentation in bone growth at the rat cranial defect site when treated with the ATP/PCL/HA composite scaffold. It can be inferred from the results that the implementation of ATP and HA for the bone tissue engineering repair material displays encouraging prospects.


Assuntos
Durapatita , Alicerces Teciduais , Ratos , Camundongos , Animais , Durapatita/farmacologia , Durapatita/química , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Biomimética , Regeneração Óssea , Impressão Tridimensional , Trifosfato de Adenosina/farmacologia , Crânio
6.
J Nanobiotechnology ; 21(1): 423, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964381

RESUMO

Conventional electrospinning produces nanofibers with smooth surfaces that limit biomineralization ability. To overcome this disadvantage, we fabricated a tetramethylpyrazine (TMP)-loaded matrix-mimicking biomineralization in PCL/Gelatin composite electrospun membranes with bubble-shaped nanofibrous structures. PCL/Gelatin membranes (PG), PCL/Gelatin membranes containing biomineralized hydroxyapatite (HA) (PGH), and PCL/Gelatin membranes containing biomineralized HA and loaded TMP (PGHT) were tested. In vitro results indicated that the bubble-shaped nanofibrous surface increased the surface roughness of the nanofibers and promoted mineralization. Furthermore, sustained-release TMP had an excellent drug release efficiency. Initially released vigorously, it reached stabilization at day 7, and the slow-release rate stabilized at 61.0 ± 1.8% at 28 days. All membranes revealed an intact cytoskeleton, cell viability, and superior adhesion and proliferation when stained with Ghost Pen Cyclic Peptide, CCK-8, cell adhesion, and EdU. In PGHT membranes, the osteogenic and vascularized gene expression of BMSCs and human vascular endothelial cells was significantly upregulated compared with that in other groups, indicating the PGHT membranes exhibited an effective vascularization role. Subsequently, the membranes were implanted in a rat cranium defect model for 4 and 8 weeks. Micro-CT and histological analysis results showed that the PGHT membranes had better bone regenerative patterns. Additionally, the levels of CD31 and VEGF significantly increased in the PGHT membrane compared with those in other membranes. Thus, PGHT membranes could accelerate the repair of cranium defects in vivo via HA and TMP synergistic effects.


Assuntos
Nanofibras , Ratos , Humanos , Animais , Nanofibras/química , Gelatina/química , Células Endoteliais , Regeneração Óssea , Durapatita/química , Crânio , Poliésteres/química , Alicerces Teciduais , Proliferação de Células , Engenharia Tecidual/métodos
7.
Mater Today Bio ; 23: 100794, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37766894

RESUMO

Osteoblasts and osteoclasts play a crucial role in the dynamically coupled balance during bone regeneration and remodeling. They complement and restrict each other in the human body. Decreased osteoblasts lead to insufficient bone formation or excessive formation of osteoclasts, leading to increased bone resorption, which will destroy the structure of the bone tissue. This will greatly increase the risk of diseases such as osteoporosis and nonunions caused by bone defects. Herein, gelatin and polycaprolactone were used as substrates, and biomaterial membranes with mesh and sandwich structures were constructed using the electrospinning technology. Naringenin was loaded into the shell, and vitamin K2 was loaded into the core layer of the nanofibrous membrane. The biocompatibility and osteogenic capacity of the membranes were assessed in vitro using mouse bone marrow mesenchymal stem cells (BMSCs). During osteoclast induction, the receptor activator of nuclear factor kappa-Β ligand (RANKL) was used to coculture RAW264.7 cells with various materials. The regulatory effect of various membranes on osteoclast growth was evaluated by detecting the expression levels of osteoclast-related genes and proteins in the cells. Subsequently, we constructed a model of a rat skull defect and implanted different membranes into the defect. Then, we evaluated the new bone formation in the defect using histological staining and micro-computed tomography after 4 and 8 weeks. The results of in vitro experiments confirmed that the incorporation of naringenin and vitamin K2 stimulated the expression of osteogenesis-related genes and the secretion of osteogenesis-related proteins. Simultaneously, the results showed that naringenin and vitamin K2 inhibited the formation and growth of osteoclasts. Therefore, naringenin and vitamin K2 have a synergistic effect in promoting bone growth and regulating osteoclast growth.

8.
Mol Med Rep ; 28(5)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37711057

RESUMO

Osteoarthritis (OA) is a degenerative disease that ultimately leads to joint deformity. The pathogenesis of OA is believed to involve abnormal chondrocyte death, with ferroptosis serving a key role in chondrocyte damage. The present study investigated whether acetyl zingerone (AZ), a newly identified antioxidant derived from curcumin, can alleviate the progression of OA. To investigate this, the present study performed various experiments, including crystal violet staining, flow cytometry, immunofluorescence and western blot analysis. In addition, dual validation was performed using in vivo and in vitro experiments; a mouse OA model was constructed for the in vivo experiments, and chondrocytes were used for the in vitro experiments. Destabilization of the medial meniscus (DMM) surgery was performed to establish an OA model in mice and IL­1ß was used to induce an OA model in vitro. The results indicated that AZ may promote chondrocyte viability and the expression of extracellular matrix components. Furthermore, AZ reduced the occurrence of ferroptosis by promoting the expression of glutathione peroxidase 4, inhibiting cartilage destruction and osteophyte formation, and alleviating damage to articular cartilage caused by DMM surgery. Mechanistically, the activation of nuclear factor erythroid 2­related factor 2 and heme oxygenase­1 may be responsible for the anti­ferroptosis effects of AZ on chondrocytes. These findings indicated that AZ may be considered a promising candidate for OA therapy.


Assuntos
Condrócitos , Ferroptose , Animais , Camundongos , Apoptose , Guaiacol , Modelos Animais de Doenças
9.
Phytother Res ; 37(11): 5394-5406, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37632225

RESUMO

Osteoarthritis (OA) is a common degenerative joint disease, which is characterized by wear of articular cartilage and narrow joint space, resulting in joint movement disorder. At present, accurate molecular mechanisms and effective interventions are still being explored. Here, we propose that angelica sinensis polysaccharide (ASP) alleviates OA progression by activating peroxisome proliferator-activated receptor gamma (PPARγ). Therapeutic effect of ASP improving mitochondrial metabolism of OA chondrocytes was evaluated in vitro and in vivo, respectively. During cell experiments, the concentration and time response of tert butyl hydroperoxide (TBHP) and ASP were determined by cell viability. Apoptosis was detected by flow cytometry. Mitochondrial metabolism was detected by reactive oxygen species (ROS), mitochondrial membrane potential (MMP), release of cytochrome C, adenosine triphosphate (ATP) production, and superoxide dismutase 2 (SOD2) activity. Expressions of Aggrecan, collagen type II (Col2a1), PPARγ, and SOD2 were detected by qRT-PCR and western blot. In animal experiments, we detected cell apoptosis and target protein expression separately through terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) staining and immunohistochemistry. Pretreatment of ASP significantly activated PPARγ and SOD2 in rat chondrocytes incubated with TBHP, cleared ROS, improved mitochondrial metabolism, increased chondrocytes viability, and alleviated chondrocytes apoptosis. In vivo, the administration of ASP could effectively ameliorate cartilage degeneration in OA rats, promote extracellular matrix synthesis, and decelerate the progress of OA. Our research identifies the role of ASP in mitochondrial metabolism of OA chondrocytes through PPARγ/SOD2/ROS pathways, which provides a new idea for the treatment of OA.


Assuntos
Angelica sinensis , Osteoartrite , Ratos , Animais , Condrócitos , Espécies Reativas de Oxigênio/metabolismo , PPAR gama/metabolismo , Angelica sinensis/química , Osteoartrite/tratamento farmacológico , Antioxidantes/farmacologia , Polissacarídeos/metabolismo
10.
Int J Biol Macromol ; 249: 126028, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37506787

RESUMO

Bone tissue engineering scaffolds have made significant progress in treating bone defects in recent decades. However, the lack of a vascular network within the scaffold limits bone formation after implantation in vivo. Recent research suggests that leonurine hydrochloride (LH) can promote healing in full-thickness cutaneous wounds by increasing vessel formation and collagen deposition. Gelatin and Sodium Alginate are both polymers. ATP is a magnesium silicate chain mineral. In this study, a Gelatin/Sodium Alginate/Nano-Attapulgite composite hydrogel was used as the base material first, and the Gelatin/Sodium Alginate/Nano-Attapulgite composite polymer scaffold loaded with LH was then created using 3D printing technology. Finally, LH was grafted onto the base material by an amide reaction to construct a scaffold loaded with LH to achieve long-term LH release. When compared to pure polymer scaffolds, in vitro results showed that LH-loaded scaffolds promoted the differentiation of BMSCs into osteoblasts, as evidenced by increased expression of osteogenic key genes. The results of in vivo tissue staining revealed that the drug-loaded scaffold promoted both angiogenesis and bone formation. Collectively, these findings suggest that LH-loaded Gelatin/Sodium Alginate/Nano-Attapulgite composite hydrogel scaffolds are a potential therapeutic strategy and can assist bone regeneration.


Assuntos
Gelatina , Osteogênese , Gelatina/farmacologia , Alginatos/farmacologia , Polímeros/farmacologia , Alicerces Teciduais , Engenharia Tecidual/métodos , Regeneração Óssea , Hidrogéis/farmacologia , Impressão Tridimensional
11.
J Cell Mol Med ; 27(8): 1095-1109, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36929666

RESUMO

Current studies have found that low-dose irradiation (IR) can promote bone regeneration. However, mechanism studies of IR-triggered bone regeneration mainly focus on the effects of osteoblasts, neglecting the role of the surrounding immune microenvironment. Here in this study, in vitro proliferation experiments showed that low-dose IR ≤2 Gy could promote the proliferation of bone marrow mesenchymal stem cells (BMSCs), and qRT-PCR assay showed that low-dose IR ≤2 Gy could exert the M2 polarization of Raw264.7 cells, while IR >2 Gy inhibited BMSC proliferation and triggered M1 polarization in Raw264.7 cells. The ALP and mineralized nodules staining showed that low-dose IR ≤2 Gy not only promoted osteoblast mineralization through IR-triggered osteoblast proliferation but also through M2 polarization of Raw264.7 cells, while high-dose IR >2 Gy had the opposite effect. The co-incubation of BMSC with low-dose IR irradiated Raw264.7 cell supernatants increased the mRNA expression of BMP-2 and Osx. The rat cranial defects model revealed that low-dose IR ≤2 Gy gradually promoted bone regeneration, while high-dose IR >2 Gy inhibited bone regeneration. Detection of macrophage polarity in peripheral blood samples showed that low-dose IR ≤2 Gy increased the expression of CD206 and CD163, but decreased the expression of CD86 and CD80 in macrophages, which indicated M2 polarization of macrophages in vivo, while high-dose IR had the opposite effect. Our finding innovatively revealed that low-dose IR ≤2 Gy promotes bone regeneration not only by directly promoting the proliferation of osteoblasts but also by triggering M2 polarization of macrophages, which provided a new perspective for immune mechanism study in the treatment of bone defects with low-dose IR.


Assuntos
Macrófagos , Células-Tronco Mesenquimais , Camundongos , Ratos , Animais , Macrófagos/metabolismo , Células RAW 264.7 , Regeneração Óssea
12.
Oxid Med Cell Longev ; 2022: 3531995, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439689

RESUMO

There is evidence that osteoarthritis (OA) is associated with ferroptosis which is a kind of lipid peroxidation-related cell death. Theaflavin-3,3'-digallate(TF3), a polyphenol compound extracted from black tea, possesses antioxidative and anti-inflammatory properties, but its effects on chondrocyte ferroptosis in osteoarthritis (OA) remain unclear. Our present study aims at exploring the protective role and underlying mechanisms of TF3 against erastin-induced chondrocyte ferroptosis in OA. In human primary chondrocytes treated with erastin alone or combined with different doses of TF3, cell viability was assessed by MTS. Ferroptosis-related proteins, including Gpx4, HO-1, and FTH1, were detected by western blot. The levels of lipid peroxidation and Fe2+ were determined by fluorescence staining. Meanwhile, the change of related proteins in the Nrf2/Gpx4 signaling pathway was determined by western blot. siRNA-mediated Nrf2 knockdown and the Gpx4 inhibitor RSL3 were used to explore molecular mechanisms for TF3-induced ferroptosis in OA chondrocyte. The magnetic resonance imaging (MRI), HE staining, Masson's staining, and immunohistochemistry were used to evaluate articular cartilage damages in the rat OA model. The results showed that Gpx4 expression was markedly downregulated in the chondrocytes of OA patients. TF3 reversed erastin-induced ferroptosis of human cultured chondrocytes, lipid ROS, and Fe2+ production in mitochondria. Moreover, the expression of Gpx4, HO-1, FTH1, and Nrf2 was markedly induced by TF3 in the erastin-treated chondrocytes. The antiferroptotic effect of TF3 was related to enhance Nrf2/Gpx4 signaling pathway. Finally, TF3 inhibited OA progression by alleviating in vivo cartilage damage related to chondrocyte ferroptosis. Thus, TF3 significantly inhibits chondrocyte ferroptosis by activating the Nrf2/Gpx4 signaling pathway, suggesting that TF3 serves as a potential therapeutic supplement for OA treatment.


Assuntos
Ferroptose , Osteoartrite , Animais , Humanos , Ratos , Antioxidantes/farmacologia , Condrócitos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Osteoartrite/tratamento farmacológico , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Transdução de Sinais
13.
Sheng Li Xue Bao ; 74(5): 783-791, 2022 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-36319101

RESUMO

As COVID-19 pandemic approaching its third year, more data have shown that obesity and hypertriglyceridemia are the high-risk factors for the major complications such as acute respiratory distress syndrome, thromboembolism, coagulopathy and cytokine storm, which are responsible for the majority of disease severity and mortality. In this review article, we have analyzed the public available clinical reports and laboratory research results of the COVID-19 studies by researchers and clinicians of many nations around the world. Many of these reports covered COVID-19 patients of different ethnic groups. We suggested that obesity and high triglycerides are high risks for severe COVID-19 and death. We also summarized the possible underlying molecular mechanism likely connecting the severe COVID-19 with obesity and hypertriglyceridemia. From public health perspective, we highlight the importance of the healthy diet and lifestyle in fighting against SARS-CoV-2 virus in long period of time.


Assuntos
COVID-19 , Hipertrigliceridemia , Humanos , Pandemias , SARS-CoV-2 , Obesidade , Índice de Gravidade de Doença
14.
Biomater Sci ; 10(16): 4635-4655, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35796642

RESUMO

Hydroxyapatite (HA) is a promising scaffold material for the treatment of bone defects. However, the lack of angiogenic properties and undesirable mechanical properties (such as fragility) limits the application of HA. Nanoattapulgite (ATP) is a nature-derived clay mineral and has been proven to be a promising bioactive material for bone regeneration due to its ability to induce osteogenesis. In this study, polyvinyl alcohol/collagen/ATP/HA (PVA/COL/ATP/HA) scaffolds were printed. Mouse bone marrow mesenchymal stem/stromal cells (BMSCs) and human umbilical vein endothelial cells (HUVECs) were used in vitro to assess the biocompatibility and the osteogenesis and vascularization induction potentials of the scaffolds. Subsequently, in vivo micro-CT and histological staining were carried out to evaluate new bone formation in a rabbit tibial defect model. The in vitro results showed that the incorporation of ATP increased the printing fidelity and mechanical properties, with values of compressive strengths up to 200% over raw PC-H scaffolds. Simultaneously, the expression levels of osteogenic-related genes and vascularization-related genes were significantly increased after the incorporation of ATP. The in vivo results showed that the PVA/COL/ATP/HA scaffolds exhibited synergistic effects on promoting vascularization and bone formation. The combination of ATP and HA provides a promising strategy for vascularized bone tissue engineering.


Assuntos
Durapatita , Osteogênese , Trifosfato de Adenosina , Animais , Regeneração Óssea , Durapatita/farmacologia , Células Endoteliais , Humanos , Camundongos , Neovascularização Patológica , Coelhos , Tíbia , Engenharia Tecidual/métodos , Alicerces Teciduais
15.
Plant Methods ; 18(1): 50, 2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35436933

RESUMO

BCAKGROUND: The dry root and rhizome of Salvia miltiorrhiza are used to treat cardiovascular diseases, chronic pain, and thoracic obstruction over 2000 years in Asian countries. For high quality, Sichuan Zhongjiang is regarded as the genuine producing area of S. miltiorrhiza. Given its abnormal pollen development, S. miltiorrhiza from Sichuan (S.m.-SC) relies on root reproduction and zymad accumulation; part of diseased plants present typical viral disease symptoms and seed quality degeneration. This study aim to detected unknown viruses from mosaic-diseased plants and establish a highly efficient virus-free regeneration system to recover germplasm properties. RESULTS: Tobacco mosaic virus (TMV) and cucumber mosaic virus (CMV) were detected from mosaic-diseased plants. Primary apical meristem with two phyllo podium in 0.15-0.5 mm peeled from diseased plants were achieved 73.33% virus-free rate. The results showed that the medium containing MS, 0.5 mg/L 6-BA, 0.1 mg/L NAA, 0.1 mg/L GA3, 30 g/L sucrose and 7.5 g/L agar can achieve embryonic-tissue (apical meristem, petiole and leaf callus) high efficient organogenesis. For callus induction, the optimal condition was detected on the medium containing MS, 2 mg/L TDZ, 0.1 mg/L NAA by using secondary petiole of virus-free plants under 24 h dark/d condition for 21 d. The optimal system for root induction was the nutrient solution with 1/2 MS supplemented with 1 mg/L NAA. After transplant, the detection of agronomic metric and salvianolic acid B content confirmed the great germplasm properties of S.m.-SC virus-free plants. CONCLUSIONS: A highly efficient virus-free regeneration system of S.m.-SC was established based on the detected viruses to recover superior seed quality. The proposed system laid support to control disease spread, recover good germplasm properties in S.m.-SC.

16.
ACS Appl Mater Interfaces ; 14(14): 15942-15955, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35353482

RESUMO

Biomaterial-immune system interactions play an important role in postimplantation osseointegration to retain the functionality of healthy and intact bones. Therefore, appropriate osteoimmunomodulation of implants has been considered and validated as an efficient strategy to alleviate inflammation and enhance new bone formation. Here, we fabricated a nanostructured PCL/PVP (polycaprolactone/polyvinylpyrrolidone) electrospinning scaffold for cell adhesion, tissue ingrowth, and bone defect padding. In addition, telmisartan, an angiotensin 2 receptor blocker with distinct immune bioactivity, was doped into PCL-/PVP-electrospun scaffolds at different proportions [1% (TPP-1), 5% (TPP-5), and 10% (TPP-10)] to investigate its immunomodulatory effects and osteoinductivity/conductivity. Telmisartan-loaded scaffolds displayed in vitro anti-inflammatory bioactivity on lipopolysaccharide-induced M1 macrophages by polarizing them to an M2-like phenotype and exhibited pro-osteogenic properties on bone marrow-derived mesenchymal stem cells (BMSCs). Histological analysis and micro-CT results of a rat skull defect model also showed that the telmisartan-loaded scaffolds induced a higher M2/M1 ratio, less inflammatory infiltration, and better bone regenerative patterns. Furthermore, activation of the BMP2 (bone morphogenetic protein-2)-Smad signaling pathway was found to be dominant in telmisartan-loaded scaffold-mediated macrophage-BMSC interactions. These findings indicate that telmisartan incorporation with PCL/PVP nanofibrous scaffolds is a potential therapeutic strategy for promoting bone healing by modulating M1 macrophages to a more M2 phenotype at early stages of postimplantation.


Assuntos
Regeneração Óssea , Alicerces Teciduais , Animais , Diferenciação Celular , Imunomodulação , Macrófagos/metabolismo , Osteogênese/fisiologia , Ratos , Telmisartan/farmacologia
17.
Front Bioeng Biotechnol ; 10: 838842, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186909

RESUMO

The hydroxyapatite (HA) coating on carbon/carbon (C/C) is reasonable and feasible to obtain bone graft materials with appropriate mechanical and biological properties. However, improvement of the physical and chemical properties of HA-C/C composites to promote bone regeneration and healing remains a challenge. In our present study, the HA coatings on C/C with magnesium (Mg) (Mg-HA-C/C) composites were synthesized that Ca (NO3)2, Mg (NO3)2, and NH4H2PO4 were mixed and coatings were made by electromagnetic induction deposition's heating. As determined with in vitro experiments, Mg-HA-C/C composites containing 10 and 20% Mg decreased miR-16 levels, increased cell viability, elevated the levels of osteogenesis-related genes, and promoted osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) seeded on their surfaces. In a rat model of skull defects, compared to the control group, at 4 and 12 weeks after the operation, the bone volume fraction (BV/TV) of Mg-HA-C/C composite group was increased by 8.439 ± 2.681% and 23.837 ± 7.845%, as well as the trabecular thickness (Tb.Th) was 56.247 ± 24.238 µm and 114.911 ± 34.015 µm more. These composites also increased the levels of ALP and RUNX2 in skull. The Mg-HA-C/C composite-enhanced bone regeneration and healing were blocked by in situ injection of an miR-16 mimic lentivirus vector. Thus, Mg-HA-C/C composites promote osteogenic differentiation and repair bone defects through inhibiting miR-16.

18.
Biomater Adv ; 133: 112656, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35034813

RESUMO

Electrospun PCL scaffolds have been widely used for tissue engineering as they have shown great potential to mimic the structure of the natural extracellular matrix (ECM). However, the small pore size and low bioactivity of the scaffolds limit cell migration and tissue formation. In this study, PCL (polycaprolactone), PCL/PEG (polyethylene glycol), and PCL/PEG/ATP (nano-attapulgite) scaffolds were fabricated via electrospinning. To increase the porosity of the scaffolds, they were washed to remove water-soluble PEG fibers. Then the porous structure was measured using scanning electron microscopy (SEM) and atomic force microscopy (AFM), which showed an increased porosity when PEG fibers were removed in PCL/PEG and PCL/PEG/ATP scaffolds. Moreover, the mechanical properties were also analyzed in dry and wet conditions. In vitro mouse multipotent mesenchymal precursor cells were used to assess the biocompatibility of the scaffolds, and osteogenesis was analyzed using CCK-8 and real-time PCR (RT-PCR) methods. Moreover, in vivo µCT, histological and immunohistochemical analyses were conducted to evaluate new bone formation in rat cranium defect models. Washed PCL/PEG/ATP scaffolds were implanted into the cranium defects in rats for 4 or 8 weeks, better cell infiltration was observed in these scaffolds than in unwashed ones. The result demonstrated that washed PCL/PEG/ATP scaffold facilitated the differentiation of MSCs into osteoblasts compared with PCL scaffold, as proved by the increased expression of osteogenic key genes as well as Smad1, Smad4, and Smad5. Furthermore, in vivo studies demonstrated that using the ATP-doped electrospun PCL scaffold can improve the bone regeneration of rat cranium defects. Particularly, the PCL/ATP-30% scaffold has the best effect compared to the other scaffolds. The enhanced osteogenesis and bone repair were related to the PCL/ATP activated BMP/Smad signaling pathway.


Assuntos
Regeneração Óssea , Alicerces Teciduais , Trifosfato de Adenosina/farmacologia , Animais , Camundongos , Ratos , Crânio/cirurgia , Engenharia Tecidual/métodos , Alicerces Teciduais/química
19.
Hortic Res ; 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35043182

RESUMO

The potato tuber is the main nutrient supply and reproductive organ; however, tuber sprouting can reduce its commercial value. Snakin-2 (StSN2) was first reported as an antimicrobial peptide that positively regulates potato disease resistance. Our recent study suggested StSN2 overexpression inhibited sprout growth, while the sprouting process was accelerated in StSN2 RNAi lines. Cytoplasmic glyceraldehyde-3- phosphate dehydrogenase 1 (StGAPC1) was identified as a candidate protein that interacts with StSN2 by coimmunoprecipitation/mass spectrometry (CoIP/MS) experiments. Here, we report that the expression levels of StSN2 and StGAPC1 decreased during sprouting compared with dormancy. Coexpression of StSN2 and StGAPC1 in bud eyes and apical buds was verified by immunofluorescence analysis of paraffin sections. In addition, interaction of StSN2 and StGAPC1 was confirmed by yeast two-hybrid, coimmunoprecipitation and split luciferase complementation assays. Overexpression of StGAPC1 depressed sprout growth, which is similar to the function of StSN2, and StSN2- and StGAPC1-overexpressing lines showed decreased glucose, fructose and galactose content. The interaction of StSN2 and StGAPC1 enhanced StGAPC1 activity and decreased its oxidative modification to inhibit sprout growth. Our results suggest that StSN2 plays a regulatory role in tuber sprout growth through interaction with StGAPC1.

20.
Oxid Med Cell Longev ; 2021: 5551338, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055194

RESUMO

INTRODUCTION: Reactive oxygen species (ROS) induced by extracellular cytokines trigger the expression of inflammatory mediators in osteoarthritis (OA) chondrocyte. Peroxisome proliferator-activated receptor gamma (PPARγ) exerts an anti-inflammatory effect. The aim of this study was to elucidate the role of PPARγ in interleukin-1ß- (IL-1ß-) induced cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2) expression through ROS generation in OA chondrocytes. METHODS: IL-1ß-induced ROS generation and chondrocyte apoptosis were determined by flow cytometry. Contents of NADPH oxidase (NOX), caspase-3, and caspase-9 were evaluated by biochemical detection. The involvement of NOX2 and mitogen-activated protein kinases (MAPKs) in IL-1ß-induced COX-2 and PGE2 expression was investigated using pharmacologic inhibitors and further analyzed by western blotting. Activation of PPARγ was performed by using a pharmacologic agonist and was analyzed by western blotting. RESULTS: IL-1ß-induced COX-2 and PGE2 expression was mediated through NOX2 activation/ROS production, which could be attenuated by N-acetylcysteine (NAC; a scavenger of ROS), GW1929 (PPARγ agonist), DPI (diphenyleneiodonium chloride, NOX2 inhibitor), SB203580 (p38MAPK inhibitor), PD98059 (extracellular signal-regulated kinase, ERK inhibitor), and SP600125 (c-Jun N-terminal kinase, JNK inhibitor). ROS activated p38MAPK to enter the nucleus, which was attenuated by PPARγ. CONCLUSION: In OA chondrocytes, IL-1ß induced COX-2 and PGE2 expression via activation of NOX2, which led to ROS production and MAPK activation. The activation of PPARγ exerted protective roles in the pathogenesis of OA.


Assuntos
Condrócitos/metabolismo , Interleucina-1beta/metabolismo , Osteoartrite/genética , PPAR gama/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Apoptose , Humanos , Osteoartrite/patologia , Ratos , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA