Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Pharmacol Res ; 209: 107420, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39293586

RESUMO

Endometrial cancer (EC) is one of the most common gynecologic malignancies, which lacking effective drugs for intractable conditions or patients unsuitable for surgeries. Recently, the patient-derived organoids (PDOs) are found feasible for cancer research and drug discoveries. Here, we have successfully established a panel of PDOs from EC and conducted drug repurposing screening and mechanism analysis for cancer treatment. We confirmed that the regulatory ß subunit of methionine adenosyltransferase (MAT2B) is highly correlated with malignant progression in endometrial cancer. Through drug screening on PDOs, we identify JX24120, chlorpromazine derivative, as a specific inhibitor for MAT2B, which directly binds to MAT2B (Kd = 4.724 µM) and inhibits the viability of EC PDOs and canonical cell lines. Correspondingly, gene editing assessment demonstrates that JX24120 suppresses tumor growth depending on the presence of MAT2B in vivo and in vitro. Mechanistically, JX24120 induces inhibition of S-adenosylmethionine (SAMe) synthesis, leading to suppressed mTORC1 signaling, abnormal energy metabolism and protein synthesis, and eventually apoptosis. Taken together, our study offers a novel approach for drug discovery and efficacy assessment by using the PDOs models. These findings suggest that JX24120 may be a potent MAT2B inhibitor and will hopefully serve as a prospective compound for endometrial cancer therapy.

2.
Front Endocrinol (Lausanne) ; 15: 1364368, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39257904

RESUMO

Background: The causality of autoimmune diseases with frailty has not been firmly established. We conducted this Mendelian randomization (MR) study to unveil the causal associations between autoimmune diseases with frailty. Methods: A MR analyses were performed to explore the relationships between autoimmune disease and frailty, using summary genome-wide association statistics. Results: Through a comprehensive and meticulous screening process, we incorporated 46, 7, 12, 20, 5, and 53 single nucleotide polymorphisms (SNPs) as instrumental variables (IVs) for hypothyroidism, hyperthyroidism, rheumatoid arthritis (RA), type 1 diabetes (T1D), multiple sclerosis (MS), and overall autoimmune disease, respectively. Our analysis revealed that hypothyroidism (OR = 1.023, 95% CI: 1.008-1.038, p = 0.0015), hyperthyroidism (OR = 1.024, 95% CI: 1.004-1.045, p = 0.0163), RA (OR = 1.031, 95% CI: 1.011-1.052, p = 0.0017), T1D (OR = 1.011, 95% CI: 1.004-1.017, p = 0.0012), and overall autoimmune disease (OR = 1.044, 95% CI: 1.028-1.061, p = 5.32*10^-8) exhibited a positive causal effect on frailty. Conversely, there may be a negative causal association between MS (OR = 0.984, 95% CI: 0.977-0.992, p = 4.87*10^-5) and frailty. Cochran's Q test indicated heterogeneity among IVs derived from hypothyroidism, hyperthyroidism, T1D, and overall autoimmune diseases. The MR-Egger regression analyzes revealed an absence of horizontal pleiotropy in any of the conducted analyses. Conclusion: This study elucidates that hypothyroidism, hyperthyroidism, RA, T1D, and overall autoimmune disease were linked to an elevated risk of frailty. Conversely, MS appears to be associated with a potential decrease in the risk of frailty.


Assuntos
Doenças Autoimunes , Fragilidade , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Humanos , Doenças Autoimunes/genética , Doenças Autoimunes/epidemiologia , Fragilidade/genética , Fatores de Risco , Predisposição Genética para Doença
3.
Science ; : eadj8172, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39208083

RESUMO

Despite continuous expansion of the RNA-binding protein (RBP) world, there is a lack of systematic understanding of RBPs in mammalian testis, which harbors one of the most complex tissue transcriptomes. We adapted RNA interactome capture to mouse male germ cells, building an RBP atlas characterized by multiple layers of dynamics along spermatogenesis. Trapping of RNA-crosslinked peptides showed that the glutamic acid-arginine (ER) patch, a residue-coevolved polyampholytic element present in coiled-coils, enhances RNA binding of its host RBPs. Deletion of this element in NONO (non-POU domain-containing octamer-binding protein) led to a defective mitosis-to-meiosis transition due to compromised NONO-RNA interactions. Whole-exome sequencing of over 1000 infertile men revealed a prominent role of RBPs in the human genetic architecture of male infertility and identified risk ER patch variants.

4.
Cell Death Dis ; 15(8): 636, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39214988

RESUMO

Perineural invasion (PNI) is a new approach of cervical cancer invasion and metastasis, involving the cross-talk between tumor and nerve. However, the initiating signals and cellular interaction mechanisms of PNI remain largely elusive. The nerve-sparing radical hysterectomy (NSRH) proposed to improve postoperative quality of life is only applicable to cervical cancer patients without PNI. Therefore, it is important to elucidate the underlying mechanisms initiating PNI, and suggest the effective biomarkers to predict PNI before NSRH surgery. Here, we found that PNI is the characteristic of advanced cervical cancer, and Schwann cells were the antecedent cells that initiating PNI. Further, neuropeptide neuromedin B (NMB) produced by cervical cancer cells was determined to induce PNI by reprogramming Schwann cells, including driving their morphological and transcriptional changes, promoting their proliferation and migration, and initiating PNI by secreting CCL2 and directing axon regeneration. Mechanistically, cervical cancer cells-produced NMB activated its receptor NMBR in Schwann cells, and opened the T-type calcium channels to stimulate Ca2+ influx through PKA signaling, which could be blocked by the inhibitor. Clinically, combined examination of serum NMB and CCL2 levels was suggested to effectively predict PNI in cervical cancer patients. Our data demonstrate that cervical cancer-produced NMB initiates the reprograming of Schwann cells, which then direct axon regeneration, thus causing PNI onset. The elevated serum NMB and CCL2 levels may be useful for the decision-making to nerve sparing during hysterectomy surgery of cervical cancer patients.


Assuntos
Invasividade Neoplásica , Neurocinina B , Células de Schwann , Neoplasias do Colo do Útero , Células de Schwann/metabolismo , Células de Schwann/patologia , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Feminino , Humanos , Animais , Neurocinina B/metabolismo , Neurocinina B/análogos & derivados , Camundongos , Movimento Celular , Proliferação de Células , Linhagem Celular Tumoral
5.
J Nutr Biochem ; 133: 109702, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39025456

RESUMO

Recent research has revealed that N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) constitutes a significant risk factor in the development of esophageal cancer. Several investigations have elucidated the beneficial impact of folic acid (FA) in safeguarding esophageal epithelial cells against MNNG-induced damage. Therefore, we hypothesized that FA might prevent MNNG-induced proliferation of esophageal epithelial cells by interfering with the PI3K/AKT/mTOR signaling pathway. In vivo experiments, we found that FA antagonized MNNG-induced proliferation of rat esophageal mucosal epithelial echinocytes and activation of the PI3K/AKT/mTOR signaling pathway. In our in vitro experiments, it was observed that acute exposure to MNNG for 24 h led to a decrease in proliferative capacity and inhibition of the PI3K/AKT/mTOR signaling pathway in an immortalized human normal esophageal epithelial cell line (Het-1A), which was also ameliorated by supplementation with FA. We successfully established a Het-1A-T-cell line by inducing malignant transformation in Het-1A cells through exposure to MNNG. Notably, the PI3K/AKT2/mTOR pathway showed early suppression followed by activation during this transition. Next, we observed that FA inhibited cell proliferation and activation of the PI3K/AKT2/mTOR signaling pathway in Het-1A-T malignantly transformed cells. We further investigated the impact of 740Y-P, a PI3K agonist, and LY294002, a PI3K inhibitor, on Het-1A-T-cell proliferation. Overall, our findings show that FA supplementation may be beneficial in safeguarding normal esophageal epithelial cell proliferation and avoiding the development of esophageal cancer by decreasing the activation of the MNNG-induced PI3K/AKT2/mTOR signaling pathway.


Assuntos
Proliferação de Células , Células Epiteliais , Ácido Fólico , Metilnitronitrosoguanidina , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Serina-Treonina Quinases TOR/metabolismo , Proliferação de Células/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Ácido Fólico/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Humanos , Masculino , Ratos , Esôfago/efeitos dos fármacos , Esôfago/metabolismo , Linhagem Celular , Ratos Sprague-Dawley , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/prevenção & controle
6.
Curr Issues Mol Biol ; 46(7): 7730-7744, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39057099

RESUMO

Polypyrimidine tract-binding protein 1 (PTBP1) plays an essential role in splicing and post-transcriptional regulation. Moreover, PTBP1 has been implicated as a causal factor in tumorigenesis. However, the involvement of PTBP1 in cellular senescence, a key biological process in aging and cancer suppression, remains to be clarified. Here, it is shown that PTBP1 is associated with the facilitation of tumor growth and the prognosis in lung adenocarcinoma (LUAD). PTBP1 exhibited significantly increased expression in various cancer types including LUAD and showed consistently decreased expression in multiple cellular senescence models. Suppression of PTBP1 induced cellular senescence in LUAD cells. In terms of molecular mechanisms, the silencing of PTBP1 enhanced the skipping of exon 3 in F-box protein 5 (FBXO5), resulting in the generation of a less stable RNA splice variant, FBXO5-S, which subsequently reduces the overall FBXO5 expression. Additionally, downregulation of FBXO5 was found to induce senescence in LUAD. Collectively, these findings illustrate that PTBP1 possesses an oncogenic function in LUAD through inhibiting senescence, and that targeting aberrant splicing mediated by PTBP1 has therapeutic potential in cancer treatment.

7.
Sci Adv ; 10(28): eadl5606, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38985880

RESUMO

Abnormal transcription initiation from alternative first exon has been reported to promote tumorigenesis. However, the prevalence and impact of gene expression regulation mediated by alternative tandem transcription initiation were mostly unknown in cancer. Here, we developed a robust computational method to analyze alternative tandem transcription start site (TSS) usage from standard RNA sequencing data. Applying this method to pan-cancer RNA sequencing datasets, we observed widespread dysregulation of tandem TSS usage in tumors, many of which were independent of changes in overall expression level or alternative first exon usage. We showed that the dynamics of tandem TSS usage was associated with epigenomic modulation. We found that significant 5' untranslated region shortening of gene TIMM13 contributed to increased protein production, and up-regulation of TIMM13 by CRISPR-mediated transcriptional activation promoted proliferation and migration of lung cancer cells. Our findings suggest that dysregulated tandem TSS usage represents an addtional layer of cancer-associated transcriptome alterations.


Assuntos
Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias , Sítio de Iniciação de Transcrição , Transcriptoma , Humanos , Perfilação da Expressão Gênica/métodos , Neoplasias/genética , Linhagem Celular Tumoral , Proliferação de Células/genética
8.
BMC Med Imaging ; 24(1): 140, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858631

RESUMO

OBJECTIVE: To construct the deep learning convolution neural network (CNN) model and machine learning support vector machine (SVM) model of bone remodeling of chronic maxillary sinusitis (CMS) based on CT image data to improve the accuracy of image diagnosis. METHODS: Maxillary sinus CT data of 1000 samples in 500 patients from January 2018 to December 2021 in our hospital was collected. The first part is the establishment and testing of chronic maxillary sinusitis detection model by 461 images. The second part is the establishment and testing of the detection model of chronic maxillary sinusitis with bone remodeling by 802 images. The sensitivity, specificity and accuracy and area under the curve (AUC) value of the test set were recorded, respectively. RESULTS: Preliminary application results of CT based AI in the diagnosis of chronic maxillary sinusitis and bone remodeling. The sensitivity, specificity and accuracy of the test set of 93 samples of CMS, were 0.9796, 0.8636 and 0.9247, respectively. Simultaneously, the value of AUC was 0.94. And the sensitivity, specificity and accuracy of the test set of 161 samples of CMS with bone remodeling were 0.7353, 0.9685 and 0.9193, respectively. Simultaneously, the value of AUC was 0.89. CONCLUSION: It is feasible to use artificial intelligence research methods such as deep learning and machine learning to automatically identify CMS and bone remodeling in MSCT images of paranasal sinuses, which is helpful to standardize imaging diagnosis and meet the needs of clinical application.


Assuntos
Remodelação Óssea , Aprendizado Profundo , Sinusite Maxilar , Sensibilidade e Especificidade , Máquina de Vetores de Suporte , Tomografia Computadorizada por Raios X , Humanos , Sinusite Maxilar/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Doença Crônica , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Redes Neurais de Computação , Idoso , Inteligência Artificial
9.
J Genet Genomics ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38740258

RESUMO

Intronic polyadenylation (IPA) is an RNA 3' end processing event which has been reported to play important roles in cancer development. However, the comprehensive landscape of IPA events across various cancer types is lacking. Here, we apply IPAFinder to identify and quantify IPA events in 10,383 samples covering all 33 cancer types from The Cancer Genome Atlas (TCGA) project. We totally identify 21,835 IPA events, almost half of which are ubiquitously expressed. We identify 2761 unique dynamically changed IPA events across cancer types. Furthermore, we observe 8855 non-redundant clinically relevant IPA events, which could potentially be used as prognostic indicators. Our analysis also reveals that dynamic IPA usage within cancer signaling pathways may affect drug response. Finally, we develop a user-friendly data portal, IPACancer Atlas (http://www.tingni-lab.com/Pancan_IPA/), to search and explore IPAs in cancer.

10.
Biomolecules ; 14(4)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38672455

RESUMO

In the challenging tumor microenvironment (TME), tumors coexist with diverse stromal cell types. During tumor progression and metastasis, a reciprocal interaction occurs between cancer cells and their environment. These interactions involve ongoing and evolving paracrine and proximal signaling. Intrinsic signal transduction in tumors drives processes such as malignant transformation, epithelial-mesenchymal transition, immune evasion, and tumor cell metastasis. In addition, cancer cells embedded in the tumor microenvironment undergo metabolic reprogramming. Their metabolites, serving as signaling molecules, engage in metabolic communication with diverse matrix components. These metabolites act as direct regulators of carcinogenic pathways, thereby activating signaling cascades that contribute to cancer progression. Hence, gaining insights into the intrinsic signal transduction of tumors and the signaling communication between tumor cells and various matrix components within the tumor microenvironment may reveal novel therapeutic targets. In this review, we initially examine the development of the tumor microenvironment. Subsequently, we delineate the oncogenic signaling pathways within tumor cells and elucidate the reciprocal communication between these pathways and the tumor microenvironment. Finally, we give an overview of the effect of signal transduction within the tumor microenvironment on tumor metabolism and tumor immunity.


Assuntos
Neoplasias , Transdução de Sinais , Microambiente Tumoral , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Transição Epitelial-Mesenquimal
11.
Nat Genet ; 56(5): 846-860, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38641644

RESUMO

Methylation quantitative trait loci (mQTLs) are essential for understanding the role of DNA methylation changes in genetic predisposition, yet they have not been fully characterized in East Asians (EAs). Here we identified mQTLs in whole blood from 3,523 Chinese individuals and replicated them in additional 1,858 Chinese individuals from two cohorts. Over 9% of mQTLs displayed specificity to EAs, facilitating the fine-mapping of EA-specific genetic associations, as shown for variants associated with height. Trans-mQTL hotspots revealed biological pathways contributing to EA-specific genetic associations, including an ERG-mediated 233 trans-mCpG network, implicated in hematopoietic cell differentiation, which likely reflects binding efficiency modulation of the ERG protein complex. More than 90% of mQTLs were shared between different blood cell lineages, with a smaller fraction of lineage-specific mQTLs displaying preferential hypomethylation in the respective lineages. Our study provides new insights into the mQTL landscape across genetic ancestries and their downstream effects on cellular processes and diseases/traits.


Assuntos
Metilação de DNA , População do Leste Asiático , Locos de Características Quantitativas , Feminino , Humanos , Masculino , População do Leste Asiático/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Herança Multifatorial , Polimorfismo de Nucleotídeo Único
12.
Sci Rep ; 14(1): 3292, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332112

RESUMO

Natural gas distributed energy is recognized as a pivotal means to enhance energy efficiency and mitigate carbon dioxide emissions through localized energy cascading. Positioned as a key option for advancing the Sustainable Development Goals, this system optimizes energy utilization near end-users. While maximizing energy efficiency, it is imperative to address potential environmental challenges. A thorough, comprehensive environmental assessment, facilitated by the life cycle assessment method, proves instrumental in meeting this standard. Employing this method enables an intuitive grasp of the environmental strengths and weaknesses inherent in natural gas distributed energy within the power structure. This insight serves as a foundation for informed project decision-making, fostering the growth of the industry. We selected six environmental impact assessment categories based on the CML 2001 method, and conducted the life cycle analysis across four stages. China's inaugural natural gas distributed energy demonstration project was chosen as a model case, and an environmental impact assessment inventory was established, utilizing survey data and literature for comprehensive data collection and analysis. Results from case testing yield environmental impact assessment outcomes, with a specific sensitivity analysis for stages with notable environmental impact factors. The study underscores that the operation phase has the highest environmental impact, comprising 78.37% of the total combined environmental impact, followed by the fuel production phase. Comparative analyses with coal-fired and conventional natural gas power generation, based on dimensionless literature data, reveal that abiotic resources depletion potential is the primary contributor to the environmental impact of 1 kWh of electricity product, constituting 52.76% of the total impact value, followed by global warming potential. Concrete strategies have been outlined for decision-making in both the operational and planning phases of natural gas distributed energy projects. The strengthening of policies is pinpointed towards grid connection and scale expansion.

13.
Nat Commun ; 15(1): 1729, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409266

RESUMO

Alternative polyadenylation plays an important role in cancer initiation and progression; however, current transcriptome-wide association studies mostly ignore alternative polyadenylation when identifying putative cancer susceptibility genes. Here, we perform a pan-cancer 3' untranslated region alternative polyadenylation transcriptome-wide association analysis by integrating 55 well-powered (n > 50,000) genome-wide association studies datasets across 22 major cancer types with alternative polyadenylation quantification from 23,955 RNA sequencing samples across 7,574 individuals. We find that genetic variants associated with alternative polyadenylation are co-localized with 28.57% of cancer loci and contribute a significant portion of cancer heritability. We further identify 642 significant cancer susceptibility genes predicted to modulate cancer risk via alternative polyadenylation, 62.46% of which have been overlooked by traditional expression- and splicing- studies. As proof of principle validation, we show that alternative alleles facilitate 3' untranslated region lengthening of CRLS1 gene leading to increased protein abundance and promoted proliferation of breast cancer cells. Together, our study highlights the significant role of alternative polyadenylation in discovering new cancer susceptibility genes and provides a strong foundational framework for enhancing our understanding of the etiology underlying human cancers.


Assuntos
Neoplasias , Transcriptoma , Humanos , Poliadenilação/genética , Estudo de Associação Genômica Ampla , Regiões 3' não Traduzidas/genética , Perfilação da Expressão Gênica , Neoplasias/genética
14.
Microb Cell Fact ; 23(1): 7, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172836

RESUMO

BACKGROUND: The 5´ untranslated region (5´ UTR) plays a key role in regulating translation efficiency and mRNA stability, making it a favored target in genetic engineering and synthetic biology. A common feature found in the 5´ UTR is the poly-adenine (poly(A)) tract. However, the effect of 5´ UTR poly(A) on protein production remains controversial. Machine-learning models are powerful tools for explaining the complex contributions of features, but models incorporating features of 5´ UTR poly(A) are currently lacking. Thus, our goal is to construct such a model, using natural 5´ UTRs from Kluyveromyces marxianus, a promising cell factory for producing heterologous proteins. RESULTS: We constructed a mini-library consisting of 207 5´ UTRs harboring poly(A) and 34 5´ UTRs without poly(A) from K. marxianus. The effects of each 5´ UTR on the production of a GFP reporter were evaluated individually in vivo, and the resulting protein abundance spanned an approximately 450-fold range throughout. The data were used to train a multi-layer perceptron neural network (MLP-NN) model that incorporated the length and position of poly(A) as features. The model exhibited good performance in predicting protein abundance (average R2 = 0.7290). The model suggests that the length of poly(A) is negatively correlated with protein production, whereas poly(A) located between 10 and 30 nt upstream of the start codon (AUG) exhibits a weak positive effect on protein abundance. Using the model as guidance, the deletion or reduction of poly(A) upstream of 30 nt preceding AUG tended to improve the production of GFP and a feruloyl esterase. Deletions of poly(A) showed inconsistent effects on mRNA levels, suggesting that poly(A) represses protein production either with or without reducing mRNA levels. CONCLUSION: The effects of poly(A) on protein production depend on its length and position. Integrating poly(A) features into machine-learning models improves simulation accuracy. Deleting or reducing poly(A) upstream of 30 nt preceding AUG tends to enhance protein production. This optimization strategy can be applied to enhance the yield of K. marxianus and other microbial cell factories.


Assuntos
Kluyveromyces , Regiões 5' não Traduzidas , Sequência de Bases , Kluyveromyces/genética , Kluyveromyces/metabolismo , RNA Mensageiro/genética
15.
Cancers (Basel) ; 15(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38067392

RESUMO

Alternative splicing can produce transcripts that affect cancer development and thus shows potential for cancer diagnosis and treatment. However, intron retention (IR), a type of alternative splicing, has been studied less in cancer biology research. Here, we generated a pan-cancer IR landscape for more than 10,000 samples across 33 cancer types from The Cancer Genome Atlas (TCGA). We characterized differentially retained introns between tumor and normal samples and identified retained introns associated with survival. We discovered 988 differentially retained introns in 14 cancers, some of which demonstrated diagnostic potential in multiple cancer types. We also inferred a large number of prognosis-related introns in 33 cancer types, and the associated genes included well-known cancer hallmarks such as angiogenesis, metastasis, and DNA mutations. Notably, we discovered a novel intron retention inside the 5'UTR of STN1 that is associated with the survival of lung cancer patients. The retained intron reduces translation efficiency by producing upstream open reading frames (uORFs) and thereby inhibits colony formation and cell migration of lung cancer cells. Besides, the IR-based prognostic model achieved good stratification in certain cancers, as illustrated in acute myeloid leukemia. Taken together, we performed a comprehensive IR survey at a pan-cancer level, and the results implied that IR has the potential to be diagnostic and prognostic cancer biomarkers, as well as new drug targets.

16.
Int J Mol Sci ; 24(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38139250

RESUMO

The occurrence and development of tumors require the metabolic reprogramming of cancer cells, namely the alteration of flux in an autonomous manner via various metabolic pathways to meet increased bioenergetic and biosynthetic demands. Tumor cells consume large quantities of nutrients and produce related metabolites via their metabolism; this leads to the remodeling of the tumor microenvironment (TME) to better support tumor growth. During TME remodeling, the immune cell metabolism and antitumor immune activity are affected. This further leads to the escape of tumor cells from immune surveillance and therefore to abnormal proliferation. This review summarizes the regulatory functions associated with the abnormal biosynthesis and activity of metabolic signaling molecules during the process of tumor metabolic reprogramming. In addition, we provide a comprehensive description of the competition between immune cells and tumor cells for nutrients in the TME, as well as the metabolites required for tumor metabolism, the metabolic signaling pathways involved, and the functionality of the immune cells. Finally, we summarize current research targeted at the development of tumor immunotherapy. We aim to provide new concepts for future investigations of the mechanisms underlying the metabolic reprogramming of tumors and explore the association of these mechanisms with tumor immunity.


Assuntos
Reprogramação Metabólica , Neoplasias , Humanos , Transdução de Sinais , Vigilância Imunológica , Imunoterapia , Microambiente Tumoral
17.
Arch Microbiol ; 205(12): 362, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37904066

RESUMO

Salmonella, a Gram-negative bacterium that infects humans and animals, causes diseases ranging from gastroenteritis to severe systemic infections. Here, we discuss various strategies used by Salmonella against host cell defenses. Epithelial cell invasion largely depends on a Salmonella pathogenicity island (SPI)-1-encoded type 3 secretion system, a molecular syringe for injecting effector proteins directly into host cells. The internalization of Salmonella into macrophages is primarily driven by phagocytosis. After entering the host cell cytoplasm, Salmonella releases many effectors to achieve intracellular survival and replication using several secretion systems, primarily an SPI-2-encoded type 3 secretion system. Salmonella-containing vacuoles protect Salmonella from contacting bactericidal substances in epithelial cells and macrophages. Salmonella modulates the immunity, metabolism, cell cycle, and viability of host cells to expand its survival in the host, and the intracellular environment of Salmonella-infected cells promotes its virulence. This review provides insights into how Salmonella subverts host cell defenses for survival.


Assuntos
Salmonella enterica , Sistemas de Secreção Tipo III , Animais , Humanos , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Salmonella typhimurium/metabolismo , Salmonella enterica/metabolismo , Virulência
18.
Proc Natl Acad Sci U S A ; 120(42): e2302482120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37816050

RESUMO

Myocardial infarction (MI) is a leading cause of heart failure (HF), associated with morbidity and mortality worldwide. As an essential part of gene expression regulation, the role of alternative polyadenylation (APA) in post-MI HF remains elusive. Here, we revealed a global, APA-mediated, 3' untranslated region (3' UTR)-lengthening pattern in both human and murine post-MI HF samples. Furthermore, the 3' UTR of apoptotic repressor gene, AVEN, is lengthened after MI, contributing to its downregulation. AVEN knockdown increased cardiomyocyte apoptosis, whereas restoration of AVEN expression substantially improved cardiac function. Mechanistically, AVEN 3' UTR lengthening provides additional binding sites for miR-30b-5p and miR-30c-5p, thus reducing AVEN expression. Additionally, PABPN1 (poly(A)-binding protein 1) was identified as a potential regulator of AVEN 3' UTR lengthening after MI. Altogether, our findings revealed APA as a unique mechanism regulating cardiac injury in response to MI and also indicated that the APA-regulated gene, AVEN, holds great potential as a critical therapeutic target for treating post-MI HF.


Assuntos
Traumatismos Cardíacos , MicroRNAs , Infarto do Miocárdio , Animais , Humanos , Camundongos , Regiões 3' não Traduzidas/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Regulação para Baixo , Traumatismos Cardíacos/genética , Proteínas de Membrana/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Proteína I de Ligação a Poli(A)
19.
Brief Bioinform ; 24(5)2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37529921

RESUMO

Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool for uncovering cellular heterogeneity. However, the high costs associated with this technique have rendered it impractical for studying large patient cohorts. We introduce ENIGMA (Deconvolution based on Regularized Matrix Completion), a method that addresses this limitation through accurately deconvoluting bulk tissue RNA-seq data into a readout with cell-type resolution by leveraging information from scRNA-seq data. By employing a matrix completion strategy, ENIGMA minimizes the distance between the mixture transcriptome obtained with bulk sequencing and a weighted combination of cell-type-specific expression. This allows the quantification of cell-type proportions and reconstruction of cell-type-specific transcriptomes. To validate its performance, ENIGMA was tested on both simulated and real datasets, including disease-related tissues, demonstrating its ability in uncovering novel biological insights.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Humanos , Perfilação da Expressão Gênica/métodos , Software , RNA-Seq/métodos , Análise de Sequência de RNA/métodos
20.
BMC Med Genomics ; 16(1): 174, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507679

RESUMO

BACKGROUND: As a chronic mountain sickness(CMS) with the highest incidence and the greatest harm, the pathogenesis of high altitude polycythemia (HAPC) is still not fully understood. METHODS: 37 HAPC patients and 42 healthy subjects were selected from plateau, and peripheral venous blood samples were collected for transcriptome sequencing on Illumina NovaSeq platform. The sequenced data were analyzed by bioinformatics and phenotypic association analysis. RESULTS: The results showed significant differences in multiple clinical indicators including RBC and HGB et al. existed between HAPC and control. Based on the RNA-seq data, 550 genes with significant differential expression were identified in HAPC patients. GO and KEGG pathway enrichment analysis showed that the up-regulated genes were mainly enriched in processes such as erythrocyte differentiation and development and homeostasis of number of cells, while the down-regulated genes were mainly enriched in categories such as immunoglobulin production, classical pathway of complement activation and other biological processes. The coupling analysis of differential expression genes(DEGs) and pathological phenotypes revealed that 91 DEGs were in close correlation with in the phenotype of red blood cell volume distribution (width-CV and width-SD), and they were all up-regulated in HAPC and involved in the process of erythrocyte metabolism. Combined with the functional annotation of DEGs and literature survey, we found that the expression of several potential genes might be responsible for pathogenesis of HAPC. Besides, cell type deconvolution analysis result suggested that the changes in the number of some immune cell types was significantly lower in HAPC patients than control, implying the autoimmune level of HAPC patients was affected to a certain extent. CONCLUSION: This study provides an important data source for understanding the pathogenesis and screening pathogenic genes of HAPC. We found for the first time that there was a significant correlation between HAPC and the pathological phenotype of width-CV and width-SD, wherein the enriched genes were all up-regulated expressed and involved in the process of erythrocyte metabolism. Although the role of these genes needs to be further studied, the candidate genes can provide a starting point for functionally pinning down the underlying mechanism of HAPC.


Assuntos
Doença da Altitude , Policitemia , Humanos , Doença da Altitude/genética , Doença da Altitude/complicações , Altitude , Policitemia/genética , Policitemia/complicações , Eritrócitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA