RESUMO
Rational design of chimeric antigen receptor T (CAR-T) cells based on the recognition of antigenic epitopes capable of evoking the most potent CAR activation is an important objective in optimizing immune therapy. In solid tumors, the B7-H3 transmembrane protein is an emerging target that harbours two distinct epitope motifs, IgC and IgV, in its ectodomain. Here, we generate dromedary camel nanobodies targeting B7-H3 and demonstrate that CAR-T cells, based on the nanobodies recognizing the IgC but not IgV domain, had potent antitumour activity against large tumors in female mice. These CAR-T cells are characterized by highly activated T cell signaling and significant tumor infiltration. Single-cell transcriptome RNA sequencing coupled with functional T-cell proteomics analysis uncovers the top-upregulated genes that might be critical for the persistence of polyfunctional CAR-T cells in mice. Our results highlight the importance of the specific target antigen epitope in governing optimal CAR-T activity and provide a nanobody-based B7-H3 CAR-T product for use in solid tumor therapy.
Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Anticorpos de Domínio Único , Feminino , Animais , Camundongos , Camelus , Anticorpos de Domínio Único/genética , Epitopos , Fatores de TranscriçãoRESUMO
A consumer-resource reaction-diffusion model with a single consumer species was proposed and experimentally studied by Zhang et al.(Ecol Lett 20:1118-1128, 2017). Analytical study on its dynamics was further performed by He et al.(J Math Biol 78:1605-1636, 2019). In this work, we completely settle the conjecture proposed by He et al.(J Math Biol 78:1605-1636, 2019) about the global dynamics of the consumer-resource model for small yield rate. We then study a multi-species consumer-resource model where all the consumer species compete with each other through depression of the limited resources by consumption and there is no direct competition between them. We show that in this case, all consumer species persist uniformly, which implies that "competition exclusion" phenomenon will never happen. We also clarify its dynamics in both homogeneous and heterogeneous environments under various circumstances.
Assuntos
Ecossistema , Modelos Biológicos , Dinâmica PopulacionalRESUMO
Clinically relevant immunological biomarkers that discriminate between diverse hypofunctional states of tumor-associated CD8+ T cells remain disputed. Using multiomics analysis of CD8+ T cell features across multiple patient cohorts and tumor types, we identified tumor niche-dependent exhausted and other types of hypofunctional CD8+ T cell states. CD8+ T cells in "supportive" niches, like melanoma or lung cancer, exhibited features of tumor reactivity-driven exhaustion (CD8+ TEX). These included a proficient effector memory phenotype, an expanded T cell receptor (TCR) repertoire linked to effector exhaustion signaling, and a cancer-relevant T cell-activating immunopeptidome composed of largely shared cancer antigens or neoantigens. In contrast, "nonsupportive" niches, like glioblastoma, were enriched for features of hypofunctionality distinct from canonical exhaustion. This included immature or insufficiently activated T cell states, high wound healing signatures, nonexpanded TCR repertoires linked to anti-inflammatory signaling, high T cell-recognizable self-epitopes, and an antiproliferative state linked to stress or prodeath responses. In situ spatial mapping of glioblastoma highlighted the prevalence of dysfunctional CD4+:CD8+ T cell interactions, whereas ex vivo single-cell secretome mapping of glioblastoma CD8+ T cells confirmed negligible effector functionality and a promyeloid, wound healing-like chemokine profile. Within immuno-oncology clinical trials, anti-programmed cell death protein 1 (PD-1) immunotherapy facilitated glioblastoma's tolerogenic disparities, whereas dendritic cell (DC) vaccines partly corrected them. Accordingly, recipients of a DC vaccine for glioblastoma had high effector memory CD8+ T cells and evidence of antigen-specific immunity. Collectively, we provide an atlas for assessing different CD8+ T cell hypofunctional states in immunogenic versus nonimmunogenic cancers.
Assuntos
Glioblastoma , Neoplasias Pulmonares , Humanos , Linfócitos T CD8-Positivos , Glioblastoma/metabolismo , Multiômica , Receptores de Antígenos de Linfócitos T/metabolismoRESUMO
Heterogeneous antigen expression is a key barrier influencing the activity of chimeric antigen receptor (CAR) T cells in solid tumors. Here, we develop CAR T cells targeting glypican-1 (GPC1), an oncofetal antigen expressed in pancreatic cancer. We report the generation of dromedary camel VHH nanobody (D4)-based CAR T cells targeting GPC1 and the optimization of the hinge (H) and transmembrane domain (TM) to improve activity. We find that a structurally rigid IgG4H and CD28TM domain brings the two D4 fragments in proximity, driving CAR dimerization and leading to enhanced T-cell signaling and tumor regression in pancreatic cancer models with low antigen density in female mice. Furthermore, single-cell-based proteomic and transcriptomic analysis of D4-IgG4H-CD28TM CAR T cells reveals specific genes (e.g., HMGB1) associated with high T-cell polyfunctionality. This study demonstrates the potential of VHH-based CAR T for pancreatic cancer therapy and provides an engineering strategy for developing potent CAR T cells targeting membrane-distal epitopes.
Assuntos
Antígenos CD28 , Neoplasias Pancreáticas , Feminino , Animais , Camundongos , Antígenos CD28/metabolismo , Glipicanas/genética , Glipicanas/metabolismo , Imunoterapia Adotiva , Epitopos/metabolismo , Proteômica , Linhagem Celular Tumoral , Linfócitos T , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Receptores de Antígenos de Linfócitos T/metabolismo , Neoplasias PancreáticasRESUMO
Genetically and phenotypically identical immune cell populations can be highly heterogenous in terms of their immune functions and protein secretion profiles. The microfluidic chip-based single-cell highly multiplexed secretome proteomics enables characterization of cellular heterogeneity of immune responses at different cellular and molecular layers. Increasing evidence has demonstrated that polyfunctional T cells that simultaneously produce 2+ proteins per cell at the single-cell level are key effector cells that contribute to the development of potent and durable cellular immunity against pathogens and cancers. The functional proteomic technology offers a wide spectrum of cellular function assessment and can uniquely define highly polyfunctional cell subsets with cytokine signatures from live individual cells. This high-dimensional single-cell analysis provides deep dissection into functional heterogeneity and helps identify predictive biomarkers and potential correlates that are crucial for immunotherapeutic product design optimization and personalized immunotherapy development to achieve better clinical outcomes.
Assuntos
Proteômica , Secretoma , Citocinas , Linfócitos T , Imunoterapia , Análise de Célula ÚnicaRESUMO
Amyotrophic lateral sclerosis (ALS) is an auto-immune neurodegenerative disorder affecting the motor-neuron system. The causes of ALS are heterogeneous, and are only partially understood. We studied different aspects of immune pathogenesis in ALS and found several basic mechanisms which are potentially involved in the disease. Our findings demonstrated that ALS patients' peripheral blood contains higher proportions of NK and B cells in comparison to healthy individuals. Significantly increased IFN-γ secretion by anti-CD3/28 mAbs-treated peripheral blood mononuclear cells (PBMCs) were observed in ALS patients, suggesting that hyper-responsiveness of T cell compartment could be a potential mechanism for ALS progression. In addition, elevated granzyme B and perforin secretion at a single cell level, and increased cytotoxicity and secretion of IFN-γ by patients' NK cells under specific treatment conditions were also observed. Increased IFN-γ secretion by ALS patients' CD8+ T cells in the absence of IFN-γ receptor expression, and increased CD8+ T cell effector/memory phenotype as well as increased granzyme B at the single cell level points to the CD8+ T cells as potential cells in targeting motor neurons. Along with the hyper-responsiveness of cytotoxic immune cells, significantly higher levels of inflammatory cytokines including IFN-γ was observed in peripheral blood-derived serum of ALS patients. Supernatants obtained from ALS patients' CD8+ T cells induced augmented cell death and differentiation of the epithelial cells. Weekly N-acetyl cysteine (NAC) infusion in patients decreased the levels of many inflammatory cytokines in peripheral blood of ALS patient except IFN-γ, TNF-α, IL-17a and GMCSF which remained elevated. Findings of this study indicated that CD8+ T cells and NK cells are likely culprits in targeting motor neurons and therefore, strategies should be designed to decrease their function, and eliminate the aggressive nature of these cells. Analysis of genetic mutations in ALS patient in comparison to identical twin revealed a number of differences and similarities which may be important in the pathogenesis of the disease.
Assuntos
Esclerose Lateral Amiotrófica , Linfócitos T CD8-Positivos , Linfócitos T Citotóxicos , Humanos , Esclerose Lateral Amiotrófica/imunologia , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Linfócitos T CD8-Positivos/metabolismo , Citocinas/metabolismo , Granzimas/metabolismo , Leucócitos Mononucleares/metabolismo , Linfócitos T Citotóxicos/metabolismoRESUMO
BACKGROUND: The mechanisms regulating CD8+ T cell migration to nonlymphoid tissue during inflammation have not been fully elucidated, and the migratory properties of effector memory CD8+ T cells that re-express CD45RA (TEMRA CD8+ T cells) remain unclear, despite their roles in autoimmune diseases and allotransplant rejection. METHODS: We used single-cell proteomic profiling and functional testing of CD8+ T cell subsets to characterize their effector functions and migratory properties in healthy volunteers and kidney transplant recipients with stable or humoral rejection. RESULTS: We showed that humoral rejection of a kidney allograft is associated with an accumulation of cytolytic TEMRA CD8+ T cells in blood and kidney graft biopsies. TEMRA CD8+ T cells from kidney transplant recipients exhibited enhanced migratory properties compared with effector memory (EM) CD8+ T cells, with enhanced adhesion to activated endothelium and transmigration in response to the chemokine CXCL12. CXCL12 directly triggers a purinergic P2×4 receptor-dependent proinflammatory response of TEMRA CD8+ T cells from transplant recipients. The stimulation with IL-15 promotes the CXCL12-induced migration of TEMRA and EM CD8+ T cells and promotes the generation of functional PSGL1, which interacts with the cell adhesion molecule P-selectin and adhesion of these cells to activated endothelium. Although disruption of the interaction between functional PSGL1 and P-selectin prevents the adhesion and transmigration of both TEMRA and EM CD8+ T cells, targeting VLA-4 or LFA-1 (integrins involved in T cell migration) specifically inhibited the migration of TEMRA CD8+ T cells from kidney transplant recipients. CONCLUSIONS: Our findings highlight the active role of TEMRA CD8+ T cells in humoral transplant rejection and suggest that kidney transplant recipients may benefit from therapeutics targeting these cells.
Assuntos
Linfócitos T CD8-Positivos , Transplante de Rim , Humanos , Transplantados , Selectina-P/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Rejeição de Enxerto , Memória Imunológica , Proteômica , Antígenos Comuns de Leucócito/metabolismo , Subpopulações de Linfócitos T/metabolismoRESUMO
With the increasing global aging population, the health of the elderly has become a global concern. Accidental falls, as one of the major causes of health and safety issues affecting the elderly, can cause serious hazards. In this paper, a fall detection system is proposed to be able to deliver timely information after a fall. The acceleration and angular velocity time series extracted from motion were used to describe human motion features. Hybrid threshold analysis algorithm and machine learning algorithm are used for classification between falls and activities of daily living (ADLs). The fall detection results showed 98.55% accuracy, 98.16% sensitivity, and 98.73% specificity. The result is higher than the single-threshold algorithm and slightly lower than the machine learning algorithm. In addition, the hybrid algorithm of fall detection in this paper is to put the threshold analysis algorithm in the edge device for calculation and put the machine learning algorithm in the cloud server for calculation. Since the single machine learning algorithm needs to transmit data to the cloud server all the time, the hybrid algorithm has lower power consumption than machine learning algorithms, and the average alarm time is shorter, making it more suitable for actual systems.
Assuntos
Acidentes por Quedas , Monitorização Ambulatorial , Acidentes por Quedas/prevenção & controle , Atividades Cotidianas , Idoso , Algoritmos , Humanos , Aprendizado de MáquinaRESUMO
Overwhelming inflammation in the setting of acute critical illness induces capillary leak resulting in hypovolemia, edema, tissue dysoxia, organ failure and even death. The tight junction (TJ)-dependent capillary barrier is regulated by small GTPases, but the specific regulatory molecules most active in this vascular segment under such circumstances are not well described. We set out to identify GTPase regulatory molecules specific to endothelial cells (EC) that form TJs. Transcriptional profiling of confluent monolayers of TJ-forming human dermal microvascular ECs (HDMECs) and adherens junction only forming-human umbilical vein EC (HUVECs) demonstrate ARHGEF12 is basally expressed at higher levels and is only downregulated in HDMECs by junction-disrupting tumor necrosis factor (TNF). HDMECs depleted of ArhGEF12 by siRNA demonstrate a significantly exacerbated TNF-induced decrease in trans-endothelial electrical resistance and disruption of TJ continuous staining. ArhGEF12 is established as a RhoA-GEF in HUVECs and its knock down would be expected to reduce RhoA activity and barrier disruption. Pulldown of active GEFs from HDMECs depleted of ArhGEF12 and treated with TNF show decreased GTP-bound Rap1A after four hours but increased GTP-bound RhoA after 12 h. In cell-free assays, ArhGEF12 immunoprecipitated from HDMECs is able to activate both Rap1A and RhoA, but not act on Rap2A-C, RhoB-C, or even Rap1B which shares 95% sequence identity with Rap1A. We conclude that in TJ-forming HDMECs, ArhGEF12 selectively activates Rap1A to limit capillary barrier disruption in a mechanism independent of cAMP-mediated Epac1 activation.
Assuntos
Fatores de Troca do Nucleotídeo Guanina , Proteína rhoA de Ligação ao GTP , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Guanosina Trifosfato , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Fator de Necrose Tumoral alfa/farmacologia , Proteínas rap1 de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína rhoB de Ligação ao GTP/metabolismoRESUMO
Understanding mechanisms of coexistence is a central topic in ecology. Mathematical analysis of models of competition between two identical species moving at different rates of symmetric diffusion in heterogeneous environments show that the slower mover excludes the faster one. The models have not been tested empirically and lack inclusions of a component of directed movement toward favourable areas. To address these gaps, we extended previous theory by explicitly including exploitable resource dynamics and directed movement. We tested the mathematical results experimentally using laboratory populations of the nematode worm, Caenorhabditis elegans. Our results not only support the previous theory that the species diffusing at a slower rate prevails in heterogeneous environments but also reveal that moderate levels of a directed movement component on top of the diffusive movement allow species to coexist. Our results broaden the theory of species coexistence in heterogeneous space and provide empirical confirmation of the mathematical predictions.
Assuntos
Distribuição Animal , Ecologia , Ecossistema , Animais , Modelos Biológicos , Dinâmica PopulacionalRESUMO
Cadmium, which is widely used in electroplating industry, chemical industry, electronic industry and nuclear industry, is harmful to human health and ecological environment. The effects of Cd at different initial concentrations on biomass, antioxidant enzyme activity and ultrastructure of Chlorella vulgaris were analysed in the present study. The results showed that C. vulgaris maintained a slow-growth trend at 3.0â mg/L Cd, and the peroxidase (POD) enzyme activity reached the highest at this concentration, which indicated that C. vulgaris could resist the oxidative damage of cells by increasing the enzyme activity, so as to improve the tolerance of C. vulgaris to Cd. When the concentration of Cd was 5.0â mg/L, although the activity of the superoxide dismutase enzyme was still very high, POD enzyme could not remove the hydrogen peroxide produced in cells in time, leading to cell damage and even death. Therefore, when the concentration reached 5.0â mg/L, the growth of C. vulgaris began to decline after four days of stress, and the cell structure was significantly damaged after six days of stress. And the higher concentration of Cd caused more Cd accumulation in cells and a serious damage to C. vulgaris. C. vulgaris can be used as an early warning indicator of Cd pollution, and it can be used for bioremediation of Cd contaminated water through tolerant subculture.
Assuntos
Chlorella vulgaris , Antioxidantes/metabolismo , Biodegradação Ambiental , Cádmio/metabolismo , Malondialdeído/metabolismo , Superóxido Dismutase/metabolismoRESUMO
Capillary endothelial cells (ECs) maintain a semi-permeable barrier between the blood and tissue by forming inter-EC tight junctions (TJs), regulating selective transport of fluid and solutes. Overwhelming inflammation, as occurs in sepsis, disrupts these TJs, leading to leakage of fluid, proteins, and small molecules into the tissues. Mechanistically, disruption of capillary barrier function is mediated by small Rho-GTPases, such as RhoA, -B, and -C, which are activated by guanine nucleotide exchange factors (GEFs) and disrupted by GTPase-activating factors (GAPs). We previously reported that a mutation in a specific RhoB GAP (p190BRhoGAP) underlays a hereditary capillary leak syndrome. Tumor necrosis factor (TNF) treatment disrupts TJs in cultured human microvascular ECs, a model of capillary leak. This response requires new gene transcription and involves increased RhoB activation. However, the specific GEF that activates RhoB in capillary ECs remains unknown. Transcriptional profiling of cultured tight junction-forming human dermal microvascular endothelial cells (HDMECs) revealed that 17 GEFs were significantly induced by TNF. The function of each candidate GEF was assessed by short interfering RNA depletion and trans-endothelial electrical resistance screening. Knockown of ArhGEF10 reduced the TNF-induced loss of barrier which was phenocopied by RhoB or dual ArhGEF10/RhoB knockdown. ArhGEF10 knockdown also reduced the extent of TNF-induced RhoB activation and disruption at tight junctions. In a cell-free assay, immunoisolated ArhGEF10 selectively catalyzed nucleotide exchange to activate RhoB, but not RhoA or RhoC. We conclude ArhGEF10 is a TNF-induced RhoB-selective GEF that mediates TJ disruption and barrier loss in human capillary endothelial cells.
Assuntos
Derme/metabolismo , Endotélio Vascular/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Junções Íntimas/fisiologia , Proteína rhoB de Ligação ao GTP/metabolismo , Permeabilidade Capilar , Derme/citologia , Derme/efeitos dos fármacos , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Transdução de Sinais , Fator de Necrose Tumoral alfa/farmacologia , Proteína rhoB de Ligação ao GTP/genéticaRESUMO
Carrying capacity is a key concept in ecology. A body of theory, based on the logistic equation, has extended predictions of carrying capacity to spatially distributed, dispersing populations. However, this theory has only recently been tested empirically. The experimental results disagree with some theoretical predictions of when they are extended to a population dispersing randomly in a two-patch system. However, they are consistent with a mechanistic model of consumption on an exploitable resource (consumer-resource model). We argue that carrying capacity, defined as the total equilibrium population, is not a fundamental property of ecological systems, at least in the context of spatial heterogeneity. Instead, it is an emergent property that depends on the population's intrinsic growth and dispersal rates.
Assuntos
Conservação dos Recursos Naturais , Ecologia , Ecossistema , Modelos Biológicos , Dinâmica PopulacionalRESUMO
Membrane distillation technology, as a new membrane-based water treatment technology that combines the membrane technology and evaporation process, has the advantages of using low-grade heat, working at atmospheric pressure with simple configuration, etc. In this study, heat and mass transfer were coupled at the membrane surfaces through the user-defined function program. The effects of feed temperature, feed velocity and permeate velocity on temperature polarization were mainly investigated for a high-concentration NaCl solution. The temperature polarization was increased with the increase of feed temperature and the decrease of feed and permeate velocity. The effects of temperature, inlet velocity and solution concentration on the evaporation efficiency of the membrane module for co- and counter-current operations were investigated in detail. The counter-current operation performed better than co-current operation in most cases, except for the condition where the NaCl concentration was relatively low or the module length was long enough. In addition, the optimal membrane thickness for both PVDF and PTFE was studied. The optimal membrane thickness was found in the range of 10 to 20 µm, which corresponded to the highest permeate flux for the selected materials, pore size distribution, and operation conditions. Membrane material with lower thermal conductivity and larger porosity was prone to get higher permeate flux and had larger optimal membrane thickness. Increasing feed velocity or feed temperature could decrease the optimal membrane thickness.
RESUMO
We first consider a diffusive logistic model of a single species in a heterogeneous environment, with two parameters, r(x) for intrinsic growth rate and K(x) for carrying capacity. When r(x) and K(x) are proportional, i.e., [Formula: see text], it is proved by Lou (J Differ Equ 223(2):400-426, 2006) that a population diffusing at any rate will reach a higher total equilibrium biomass than the population in an environment in which the same total resources are distributed homogeneously. This paper studies another case when r(x) is a constant, i.e., independent of K(x). In such case, a striking result is that for any dispersal rate, the logistic equation with spatially heterogeneous resources will always support a total population strictly smaller than the total carrying capacity at equilibrium, which is just opposite to the case [Formula: see text]. These two cases of single species models also lead to two different forms of Lotka-Volterra competition-diffusion systems. We then examine the consequences of the aforementioned difference on the two forms of competition systems. We find that the outcome of the competition in terms of the dispersal rates and spatial distributions of resources for the two forms of competition systems are again quite different. Our results indicate that in heterogeneous environments, the correlation between r(x) and K(x) has more profound impacts in population ecology than we had previously expected, at least from a mathematical point of view.
Assuntos
Conservação dos Recursos Naturais/estatística & dados numéricos , Modelos Biológicos , Animais , Biomassa , Ecossistema , Modelos Logísticos , Conceitos Matemáticos , Dinâmica Populacional , Crescimento DemográficoRESUMO
Stressors such as antibiotics, herbicides, and pollutants are becoming increasingly common in the environment. The effects of stressors on populations are typically studied in homogeneous, nonspatial settings. However, most populations in nature are spatially distributed over environmentally heterogeneous landscapes with spatially restricted dispersal. Little is known about the effects of stressors in these more realistic settings. Here, we combine laboratory experiments with novel mathematical theory to rigorously investigate how a stressor's physiological effect and spatial distribution interact with dispersal to influence population dynamics. We prove mathematically that if a stressor increases the death rate and/or simultaneously decreases the population growth rate and yield, a homogeneous distribution of the stressor leads to a lower total population size than if the same amount of the stressor was heterogeneously distributed. We experimentally test this prediction on spatially distributed populations of budding yeast (Saccharomyces cerevisiae). We find that the antibiotic cycloheximide increases the yeast death rate but reduces the growth rate and yield. Consistent with our mathematical predictions, we observe that a homogeneous spatial distribution of cycloheximide minimizes the total equilibrium size of experimental metapopulations, with the magnitude of the effect depending predictably on the dispersal rate and the geographic pattern of antibiotic heterogeneity. Our study has implications for assessing the population risk posed by pollutants, antibiotics, and global change and for the rational design of strategies for employing toxins to control pathogens and pests.
Assuntos
Conservação dos Recursos Naturais , Modelos Teóricos , Dinâmica Populacional , Antifúngicos , Cicloeximida , Demografia , Ecologia , Crescimento Demográfico , Saccharomyces cerevisiae/efeitos dos fármacosRESUMO
Excessive visceral fat accumulation is a primary risk factor for metabolically unhealthy obesity and related diseases. The visceral fat is highly susceptible to the availability of external nutrients. Nutrient flux into the hexosamine biosynthetic pathway leads to protein posttranslational modification by O-linked ß-N-acetylglucosamine (O-GlcNAc) moieties. O-GlcNAc transferase (OGT) is responsible for the addition of GlcNAc moieties to target proteins. Here, we report that inducible deletion of adipose OGT causes a rapid visceral fat loss by specifically promoting lipolysis in visceral fat. Mechanistically, visceral fat maintains a high level of O-GlcNAcylation during fasting. Loss of OGT decreases O-GlcNAcylation of lipid droplet-associated perilipin 1 (PLIN1), which leads to elevated PLIN1 phosphorylation and enhanced lipolysis. Moreover, adipose OGT overexpression inhibits lipolysis and promotes diet-induced obesity. These findings establish an essential role for OGT in adipose tissue homeostasis and indicate a unique potential for targeting O-GlcNAc signaling in the treatment of obesity.
Assuntos
Dieta/efeitos adversos , Gordura Intra-Abdominal/efeitos dos fármacos , Lipólise/efeitos dos fármacos , N-Acetilglucosaminiltransferases/antagonistas & inibidores , Obesidade/metabolismo , Acetilglucosamina/metabolismo , Animais , Linhagem Celular Tumoral , Jejum , Deleção de Genes , Células HEK293 , Células HeLa , Homeostase , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , N-Acetilglucosaminiltransferases/genética , Perilipina-1/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Transdução de SinaisRESUMO
RATIONALE: BMX (bone marrow kinase on the X chromosome) is highly expressed in the arterial endothelium from the embryonic stage to the adult stage in mice. It is also expressed in microvessels and the lymphatics in response to pathological stimuli. However, its role in endothelial permeability and sepsis remains unknown. OBJECTIVE: We aimed to delineate the function of BMX in thrombin-mediated endothelial permeability and the vascular leakage that occurs with sepsis in cecal ligation and puncture models. METHODS AND RESULTS: The cecal ligation and puncture model was applied to WT (wild type) and BMX-KO (BMX global knockout) mice to induce sepsis. Meanwhile, the electric cell-substrate impedance sensing assay was used to detect transendothelial electrical resistance in vitro and, the modified Miles assay was used to evaluate vascular leakage in vivo. We showed that BMX loss caused lung injury and inflammation in early cecal ligation and puncture-induced sepsis. Disruption of BMX increased thrombin-mediated permeability in mice and cultured endothelial cells by 2- to 3-fold. The expression of BMX in macrophages, neutrophils, platelets, and lung epithelial cells was undetectable compared with that in endothelial cells, indicating that endothelium dysfunction, rather than leukocyte and platelet dysfunction, was involved in vascular permeability and sepsis. Mechanistically, biochemical and cellular analyses demonstrated that BMX specifically repressed thrombin-PAR1 (protease-activated receptor-1) signaling in endothelial cells by directly phosphorylating PAR1 and promoting its internalization and deactivation. Importantly, pretreatment with the selective PAR1 antagonist SCH79797 rescued BMX loss-mediated endothelial permeability and pulmonary leakage in early cecal ligation and puncture-induced sepsis. CONCLUSIONS: Acting as a negative regulator of PAR1, BMX promotes PAR1 internalization and signal inactivation through PAR1 phosphorylation. Moreover, BMX-mediated PAR1 internalization attenuates endothelial permeability to protect vascular leakage during early sepsis.
Assuntos
Endotélio Vascular/fisiopatologia , Proteínas Tirosina Quinases/deficiência , Receptor PAR-1/metabolismo , Sepse/metabolismo , Trombina/metabolismo , Animais , Permeabilidade Capilar/genética , Células Cultivadas , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Permeabilidade/efeitos dos fármacos , Proteínas Tirosina Quinases/genética , Pirróis/farmacologia , Quinazolinas/farmacologia , Receptor PAR-1/antagonistas & inibidores , Receptor PAR-1/genética , Sepse/genética , Sepse/fisiopatologia , Transdução de Sinais/efeitos dos fármacosRESUMO
Cancer cells are known to adopt aerobic glycolysis in order to fuel tumor growth, but the molecular basis of this metabolic shift remains largely undefined. O-GlcNAcase (OGA) is an enzyme harboring O-linked ß-N-acetylglucosamine (O-GlcNAc) hydrolase and cryptic lysine acetyltransferase activities. Here, we report that OGA is upregulated in a wide range of human cancers and drives aerobic glycolysis and tumor growth by inhibiting pyruvate kinase M2 (PKM2). PKM2 is dynamically O-GlcNAcylated in response to changes in glucose availability. Under high glucose conditions, PKM2 is a target of OGA-associated acetyltransferase activity, which facilitates O-GlcNAcylation of PKM2 by O-GlcNAc transferase (OGT). O-GlcNAcylation inhibits PKM2 catalytic activity and thereby promotes aerobic glycolysis and tumor growth. These studies define a causative role for OGA in tumor progression and reveal PKM2 O-GlcNAcylation as a metabolic rheostat that mediates exquisite control of aerobic glycolysis.
Assuntos
Antígenos de Neoplasias/metabolismo , Proteínas de Transporte/metabolismo , Histona Acetiltransferases/metabolismo , Hialuronoglucosaminidase/metabolismo , Proteínas de Membrana/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Neoplasias/patologia , Hormônios Tireóideos/metabolismo , Acetilação , Acetilglucosamina/metabolismo , Animais , Linhagem Celular Tumoral , Conjuntos de Dados como Assunto , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Glicólise , Células HEK293 , Humanos , Masculino , Camundongos , Gradação de Tumores , Estadiamento de Neoplasias , Neoplasias/metabolismo , Processamento de Proteína Pós-Traducional , Análise Serial de Tecidos , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas de Ligação a Hormônio da TireoideRESUMO
We study the dynamics of a consumer-resource reaction-diffusion model, proposed recently by Zhang et al. (Ecol Lett 20(9):1118-1128, 2017), in both homogeneous and heterogeneous environments. For homogeneous environments we establish the global stability of constant steady states. For heterogeneous environments we study the existence and stability of positive steady states and the persistence of time-dependent solutions. Our results illustrate that for heterogeneous environments there are some parameter regions in which the resources are only partially limited in space, a unique feature which does not occur in homogeneous environments. Such difference between homogeneous and heterogeneous environments seems to be closely connected with a recent finding by Zhang et al. (2017), which says that in consumer-resource models, homogeneously distributed resources could support higher population abundance than heterogeneously distributed resources. This is opposite to the prediction by Lou (J Differ Equ 223(2):400-426, 2006. https://doi.org/10.1016/j.jde.2005.05.010 ) for logistic-type models. For both small and high yield rates, we also show that when a consumer exists in a region with a heterogeneously distributed input of exploitable renewed limiting resources, the total population abundance at equilibrium can reach a greater abundance when it diffuses than when it does not. In contrast, such phenomenon may fail for intermediate yield rates.