Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Food Funct ; 14(18): 8201-8216, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37551935

RESUMO

Activation of adipose tissue thermogenesis is a promising strategy in the treatment of obesity and obesity-related metabolic disorders. Kaempferol (KPF) is a predominant dietary flavonoid with multiple pharmacological properties, such as anti-inflammatory and antioxidant activities. In this study, we sought to characterize the role of KPF in adipocyte thermogenesis. We demonstrated that KPF-treated mice were protected from diet-induced obesity, glucose tolerance, and insulin resistance, accompanied by markedly increased energy expenditure, ex vivo oxygen consumption of white fat, and increased expression of proteins related to adaptive thermogenesis. KPF-promoted beige cell formation is a cell-autonomous effect, since the overexpression of cyclin-dependent kinase 6 (CDK6) in preadipocytes partially reversed browning phenotypes observed in KPF-treated cells. Overall, these data implicate that KPF is involved in promoting beige cell formation by suppressing CDK6 protein expression. This study provides evidence that KPF is a promising natural product for obesity treatment by boosting energy expenditure.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Quinase 6 Dependente de Ciclina , Animais , Camundongos , Quinase 6 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/farmacologia , Quinase 6 Dependente de Ciclina/uso terapêutico , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/farmacologia , Subunidade alfa 2 de Fator de Ligação ao Core/uso terapêutico , Tecido Adiposo Marrom/metabolismo , Quempferóis/farmacologia , Adipócitos , Obesidade/tratamento farmacológico , Obesidade/genética , Obesidade/metabolismo , Tecido Adiposo Branco/metabolismo , Dieta Hiperlipídica/efeitos adversos , Transdução de Sinais , Termogênese , Camundongos Endogâmicos C57BL , Metabolismo Energético
2.
Artigo em Inglês | MEDLINE | ID: mdl-37433343

RESUMO

Adipocyte browning increases energy expenditure by thermogenesis, which has been considered a potential strategy against obesity and its related metabolic diseases. Phytochemicals derived from natural products with the ability to improve adipocyte thermogenesis have aroused extensive attention. Acteoside (Act), a phenylethanoid glycoside, exists in various medicinal or edible plants and has been shown to regulate metabolic disorders. Here, the browning effect of Act was evaluated by stimulating beige cell differentiation from the stromal vascular fraction (SVF) in the inguinal white adipose tissue (iWAT) and 3T3-L1 preadipocytes, and by converting the iWAT-SVF derived mature white adipocytes. Act improves adipocyte browning by differentiation of the stem/progenitors into beige cells and by direct conversion of mature white adipocytes into beige cells. Mechanistically, Act inhibited CDK6 and mTOR, and consequently relieved phosphorylation of the transcription factor EB (TFEB) and increased its nuclear retention, leading to induction of PGC-1α, a driver of mitochondrial biogenesis, and UCP1-dependent browning. These data thus unveil a CDK6-mTORC1-TFEB pathway that regulates Act-induced adipocyte browning.


Assuntos
Tecido Adiposo Branco , Doenças Metabólicas , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Tecido Adiposo Branco/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Adipócitos Brancos/metabolismo , Doenças Metabólicas/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/farmacologia
3.
J Ethnopharmacol ; 307: 116259, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36781055

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Hypericum perforatum L. (genus Hypericum, family Hypericaceae) is a flowering plant native to Europe, North Africa and Asia, which can be used in the treatment of psychiatric disorder, cardiothoracic depression and diabetes. Crataegus pinnatifida Bunge (genus Crataegus pinnatifida Bunge, family Rosaceae) was another traditional Chinese medicine for treating hyperlipidemia. Hyperoside (Hype), a major flavonoid glycoside component of Hypericum perforatum L. and Crataegus pinnatifida Bunge, possesses multiple physiological activities, such as anti-inflammatory and antioxidant effects. However, the role of Hype on obesity and related metabolic diseases still needs to be further investigated. AIM OF THE STUDY: We explored the effect of Hype on high-fat diet (HFD)-induced obesity and its metabolic regulation on white fat tissues. MATERIALS AND METHODS: In vivo four-week-old male C57BL/6J mice were randomly assigned to vehicle (0.5% methycellulose) and Hype (80 mg/kg/day by gavage) group under a normal chow diet (NCD) or HFD for 8 weeks. In vitro, 3T3-L1 preadipocyte cell line and primary stromal vascular fraction (SVF) cells from inguinal white adipose tissue (iWAT) of mice were used to investigate the molecular mechanisms of Hype regulation on adipocyte energy metabolism. RESULTS: Hype treatment in vivo promotes UCP1-dependent white to beige fat transition, increases glucose and lipid metabolism, and resists HFD-induced obesity. Meanwhile, Hype induces lipophagy, a specific autophagy that facilitates the breakdown of lipid droplets, and blocking autophagy partially reduces UCP1 expression. Mechanistically, Hype inhibited CDK6, leading to the increased nuclear translocation of TFEB, while overexpression of CDK6 partially reversed the enhancement of UCP1 by Hype. CONCLUSIONS: Hype protects mice from HFD-induced obesity by increasing energy expenditure of white fat tissue via CDK6-TFEB pathway.


Assuntos
Dieta Hiperlipídica , Obesidade , Animais , Camundongos , Tecido Adiposo Branco , Autofagia , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Termogênese
4.
Viruses ; 14(3)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35336854

RESUMO

A live attenuated duck Tembusu virus (TMUV) vaccine FX2010-180P (180P) was successfully utilized to prevent TMUV infections in ducks in China. Compared with wild-type TMUV, 180P was highly attenuated and lost transmissibility in ducks. However, the mechanism of the attenuation of 180P remains poorly understood. To explore the key molecular basis of attenuation, chimeric and site mutant viruses in the background of the wild-type TMUV-FX2010 (FX) strain were rescued, and the replication, tissue tropism, and transmissibility were characterized in ducks. The results show that the envelope (E) protein was responsible for attenuation and loss of transmission in ducks. Further studies showed that a D120N amino acid mutation located in domain II of the E protein was responsible for the attenuation and transmissibility loss of 180P in ducks. The D120N substitution resulted in an extra high-mannose type N-linked glycosylation (NLG) in the E protein of 180P compared with the wild-type TMUV, which might restrict the tissue tropism and transmissibility of TMUV in ducks. Our findings elucidate that N120 in the E protein is a key molecular basis of TMUV attenuation in ducks and provide new insight into the role of NLG in TMUV tissue tropism and transmissibility.


Assuntos
Infecções por Flavivirus , Flavivirus , Doenças das Aves Domésticas , Animais , Linhagem Celular , Patos , Flavivirus/genética , Infecções por Flavivirus/prevenção & controle , Infecções por Flavivirus/veterinária , Mutação , Vacinas Atenuadas
5.
Vet Microbiol ; 189: 52-8, 2016 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-27259827

RESUMO

Riemerella anatipestifer infection is a severe disease confronting the duck industry worldwide. However, little is known about the molecular basis of R. anatipestifer pathogenesis. In this study, we screened 3580 transposon Tn4351 insertion mutagenesis mutants of the highly virulent strain YZb1 in a duckling infection experiment and found 29 of them to be attenuated and 28 potential virulence-associated genes were identified. Molecular characterization of transposon insertion sites showed that of the 28 screened genes, two were predicted to encode TonB-dependent outer membrane receptor (plugs), sixteen encoded enzymes, and seven encoded hypothetical proteins. In addition, of the 28 affected genes, 19 were only found in bacteria belonging to the phylum Bacteroidetes and 10 were only found in the family Flavobacteriaceae. The median lethal dose of the mutants M11 and M29, which was affected in Riean_0060 and Riean_1537 respectively, were about 1700-fold and 210-fold higher than that of the wild-type strain YZb1, and those of the complemented strains M11(pRES-Riean_0060) and M29(pRES-Riean_1537) were decreased by 25- and 3-fold respectively compared to those of the mutants M11 and M29. Additional analysis indicated that the blood bacterial loading of ducklings infected with M11 or M29 was decreased significantly, as compared with that in ducklings infected with the wild-type strain YZb1. Thus, our results indicate that Riean_0060 and Riean_1537 were involved in R. anatipestifer pathogenesis.


Assuntos
Patos , Infecções por Flavobacteriaceae/veterinária , Mutagênese Insercional , Riemerella/genética , Riemerella/patogenicidade , Virulência/genética , Animais , Carga Bacteriana , Proteínas de Bactérias/genética , Sangue/microbiologia , Infecções por Flavobacteriaceae/microbiologia , Doenças das Aves Domésticas/microbiologia
6.
Vet Microbiol ; 168(2-4): 395-402, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24345412

RESUMO

Riemerella anatipestifer causes epizootic infectious disease in poultry and serious economic losses especially to the duck industry. However, little is known regarding the molecular basis of its pathogenesis. The ability to acquire iron under low-iron conditions is related to the virulence of a variety of bacterial pathogens. In this study, a sip (Riean_1281) deletion mutant CH3Δsip was constructed and characterized for iron-limited growth, biofilm formation, and pathogenicity to ducklings. Results showed that siderophore-interacting protein (SIP) was involved in iron utilization and the sip deletion significantly reduced biofilm formation and adherence to and invasion of Vero cells. In addition, the sip gene was absent in 1 of 24 (4.17%) virulent strains and 2 of 3 (66.7%) avirulent strains of R. anatipestifer, and the sip gene from six R. anatipestifer strains, which belong to serotypes 1, 2, and 10, respectively, shared 100% amino acid identities to those of R. anatipestifer strains DSM15868 and RA-GD. These results suggested that siderophore-mediated iron acquisition may be an important iron-uptake pathway in R. anatipestifer. Animal experiments indicated that the median lethal dose of the CH3Δsip mutant in ducklings was about 35-fold higher than that of the wild-type CH3 strain. Thus, our results demonstrated that R. anatipestifer SIP was involved in iron acquisition and necessary for its optimal virulence.


Assuntos
Proteínas de Bactérias/metabolismo , Infecções por Flavobacteriaceae/microbiologia , Ferro/metabolismo , Doenças das Aves Domésticas/microbiologia , Riemerella/metabolismo , Sideróforos/metabolismo , Animais , Proteínas de Bactérias/genética , Chlorocebus aethiops , Patos , Infecções por Flavobacteriaceae/metabolismo , Infecções por Flavobacteriaceae/veterinária , Deleção de Genes , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Aves Domésticas , Doenças das Aves Domésticas/metabolismo , Riemerella/classificação , Riemerella/patogenicidade , Sideróforos/genética , Células Vero , Virulência/fisiologia
7.
Vet Microbiol ; 167(3-4): 713-8, 2013 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-24075356

RESUMO

Riemerella anatipestifer is an important duck pathogen and causes serious economic losses to the duck industry worldwide. To date, four full R. anatipestifer genomic sequences have been submitted to the GenBank database and 31 TonB-dependent outer membrane receptors, which may play critical roles in host-bacteria interactions, were predicted for R. anatipestifer strain GSM15868. In our previous study, we reported that the TonB-dependent receptor TbdR1 was a cross immunogenic antigen among R. anatipestifer serotypes 1, 2, and 10. However, the biological functions of TbdR1 in R. anatipestifer remain unclear. In the present study, a tbdR1 (Riean_1607) deletion mutant CH3ΔtbdR1 of R. anatipestifer strain CH3 was constructed and characterized for iron-limited growth, biofilm formation, and pathogenicity to ducklings. Our results showed that TbdR1 was involved in hemin iron acquisition and the tbdR1 deletion significantly reduced biofilm formation and adhesion to and invasion of Vero cells. Animal experiments indicated that the median lethal dose of the CH3ΔtbdR1 mutant in ducklings was about 45-fold higher than that of the wild-type CH3 strain. Additional analysis indicated that bacterial loads in blood, liver, and brain tissues in CH3ΔtbdR1-infected ducklings were decreased significantly compared to those in wild-type CH3-infected ducklings. Thus, our results demonstrated that TbdR1 was involved in hemin iron acquisition and necessary for optimal bacterial virulence.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/metabolismo , Infecções por Flavobacteriaceae/veterinária , Ferro/metabolismo , Proteínas de Membrana/metabolismo , Doenças das Aves Domésticas/microbiologia , Riemerella/fisiologia , Riemerella/patogenicidade , Animais , Carga Bacteriana , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , Biofilmes , Chlorocebus aethiops , Patos , Infecções por Flavobacteriaceae/microbiologia , Proteínas de Membrana/genética , Riemerella/genética , Riemerella/metabolismo , Deleção de Sequência/genética , Virulência/genética
8.
J Microbiol Methods ; 95(2): 262-7, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24064367

RESUMO

Riemerella anatipestifer causes epizootic infectious disease in poultry and serious economic losses, especially to the duck industry. Four complete genome sequences of R. anatipestifer strains are now available. However, functional studies have been limited by the lack of an effective shuttle vector. In this study, we constructed a shuttle vector, pRES, which was able to transfer plasmid DNA between Escherichia coli and R. anatipestifer strains. The vector contains the putative replication origin from R. anatipestifer plasmid pRA7026 and a ColE1 ori for replication in R. anatipestifer and E. coli respectively. In addition, it contains oriT for transferring the vector into R. anatipestifer by conjugation, and the putative promoter of the streptothricin resistance gene of plasmid pRA0726 for heterologous gene expression in R. anatipestifer. The vector pRES will be useful in the investigation of gene function in R. anatipestifer.


Assuntos
Vetores Genéticos/genética , Riemerella/genética , Riemerella/isolamento & purificação , Animais , Proteínas da Membrana Bacteriana Externa/genética , DNA Bacteriano/genética , Patos/microbiologia , Escherichia coli/genética , Plasmídeos/genética , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA