Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genomics Proteomics Bioinformatics ; 18(4): 481-487, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-33346083

RESUMO

Previous studies have reported that some important loci are missed in single-locus genome-wide association studies (GWAS), especially because of the large phenotypic error in field experiments. To solve this issue, multi-locus GWAS methods have been recommended. However, only a few software packages for multi-locus GWAS are available. Therefore, we developed an R software named mrMLM v4.0.2. This software integrates mrMLM, FASTmrMLM, FASTmrEMMA, pLARmEB, pKWmEB, and ISIS EM-BLASSO methods developed by our lab. There are four components in mrMLM v4.0.2, including dataset input, parameter setting, software running, and result output. The fread function in data.table is used to quickly read datasets, especially big datasets, and the doParallel package is used to conduct parallel computation using multiple CPUs. In addition, the graphical user interface software mrMLM.GUI v4.0.2, built upon Shiny, is also available. To confirm the correctness of the aforementioned programs, all the methods in mrMLM v4.0.2 and three widely-used methods were used to analyze real and simulated datasets. The results confirm the superior performance of mrMLM v4.0.2 to other methods currently available. False positive rates are effectively controlled, albeit with a less stringent significance threshold. mrMLM v4.0.2 is publicly available at BioCode (https://bigd.big.ac.cn/biocode/tools/BT007077) or R (https://cran.r-project.org/web/packages/mrMLM.GUI/index.html) as an open-source software.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Software
2.
Brief Bioinform ; 19(4): 700-712, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28158525

RESUMO

The mixed linear model has been widely used in genome-wide association studies (GWAS), but its application to multi-locus GWAS analysis has not been explored and assessed. Here, we implemented a fast multi-locus random-SNP-effect EMMA (FASTmrEMMA) model for GWAS. The model is built on random single nucleotide polymorphism (SNP) effects and a new algorithm. This algorithm whitens the covariance matrix of the polygenic matrix K and environmental noise, and specifies the number of nonzero eigenvalues as one. The model first chooses all putative quantitative trait nucleotides (QTNs) with ≤ 0.005 P-values and then includes them in a multi-locus model for true QTN detection. Owing to the multi-locus feature, the Bonferroni correction is replaced by a less stringent selection criterion. Results from analyses of both simulated and real data showed that FASTmrEMMA is more powerful in QTN detection and model fit, has less bias in QTN effect estimation and requires a less running time than existing single- and multi-locus methods, such as empirical Bayes, settlement of mixed linear model under progressively exclusive relationship (SUPER), efficient mixed model association (EMMA), compressed MLM (CMLM) and enriched CMLM (ECMLM). FASTmrEMMA provides an alternative for multi-locus GWAS.


Assuntos
Algoritmos , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único , Teorema de Bayes , Simulação por Computador , Modelos Lineares , Modelos Genéticos , Herança Multifatorial , Fenótipo
4.
PLoS Comput Biol ; 13(1): e1005357, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28141824

RESUMO

Genome-wide association study (GWAS) entails examining a large number of single nucleotide polymorphisms (SNPs) in a limited sample with hundreds of individuals, implying a variable selection problem in the high dimensional dataset. Although many single-locus GWAS approaches under polygenic background and population structure controls have been widely used, some significant loci fail to be detected. In this study, we used an iterative modified-sure independence screening (ISIS) approach in reducing the number of SNPs to a moderate size. Expectation-Maximization (EM)-Bayesian least absolute shrinkage and selection operator (BLASSO) was used to estimate all the selected SNP effects for true quantitative trait nucleotide (QTN) detection. This method is referred to as ISIS EM-BLASSO algorithm. Monte Carlo simulation studies validated the new method, which has the highest empirical power in QTN detection and the highest accuracy in QTN effect estimation, and it is the fastest, as compared with efficient mixed-model association (EMMA), smoothly clipped absolute deviation (SCAD), fixed and random model circulating probability unification (FarmCPU), and multi-locus random-SNP-effect mixed linear model (mrMLM). To further demonstrate the new method, six flowering time traits in Arabidopsis thaliana were re-analyzed by four methods (New method, EMMA, FarmCPU, and mrMLM). As a result, the new method identified most previously reported genes. Therefore, the new method is a good alternative for multi-locus GWAS.


Assuntos
Algoritmos , Mapeamento Cromossômico/métodos , Análise Mutacional de DNA/métodos , Estudos de Associação Genética/métodos , Polimorfismo de Nucleotídeo Único/genética , Característica Quantitativa Herdável , Teorema de Bayes , Simulação por Computador , Interpretação Estatística de Dados , Marcadores Genéticos/genética , Funções Verossimilhança , Modelos Genéticos , Modelos Estatísticos
5.
Sci Rep ; 6: 29951, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27435756

RESUMO

Composite interval mapping (CIM) is the most widely-used method in linkage analysis. Its main feature is the ability to control genomic background effects via inclusion of co-factors in its genetic model. However, the result often depends on how the co-factors are selected, especially for small-effect and linked quantitative trait loci (QTL). To address this issue, here we proposed a new method under the framework of genome-wide association studies (GWAS). First, a single-locus random-SNP-effect mixed linear model method for GWAS was used to scan each putative QTL on the genome in backcross or doubled haploid populations. Here, controlling background via selecting markers in the CIM was replaced by estimating polygenic variance. Then, all the peaks in the negative logarithm P-value curve were selected as the positions of multiple putative QTL to be included in a multi-locus genetic model, and true QTL were automatically identified by empirical Bayes. This called genome-wide CIM (GCIM). A series of simulated and real datasets was used to validate the new method. As a result, the new method had higher power in QTL detection, greater accuracy in QTL effect estimation, and stronger robustness under various backgrounds as compared with the CIM and empirical Bayes methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA