Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 851(Pt 2): 158371, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36041624

RESUMO

Shale gas wastewater (SGW) disposal is a major challenge in the areas in central China due to its increasing volume associated with intensification of shale gas exploration and its high levels of contaminants. In the Fuling shale gas field of Sichuan Basin, a small amount of SGW originated from the flowback and produced water (FPW) is treated and then discharged to a local stream. This study investigated the inorganic water geochemistry and Sr isotopic composition of the FPW in Fuling shale gas field, the SGW effluent that is generated in the treatment facility, and the quality of a local river after the disposal of treated SGW. The data generated in this study reveals that FPW generate after several years of shale gas operation maintain the original geochemical fingerprints detected in early stages of FPW generation, and consistent with the FPW composition detected in other shale gas fields in Sichuan Basin. We show that reuse of saline FPW for hydraulic fracturing can generate an inverse salinity trend, where the salinity of FPW decreases with time, reflecting the increase of the contribution of formation water with lower salinity. The treatment of the FPW results in ~40 % reduction of the salts by dilution with freshwater and selective (80-90 %) removal of some of the inorganic contaminants. The original geochemical fingerprints of the FPW from Fuling shale gas field was not modified during FPW treatment, reinforcing the applicability of these tracers for detecting SGW in the environment. Discharge of treated SGW effluent to a local river causes a major 200-fold dilution and reduction of all contaminants levels below drinking water and ecological standards. Overall, this study emphasizes the importance of water quality monitoring of treated SGW and the overall measures needed to protect public health and the environment in areas of shale gas development.


Assuntos
Água Potável , Fraturamento Hidráulico , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias/química , Gás Natural , Sais , Purificação da Água/métodos , Campos de Petróleo e Gás , Minerais , Poluentes Químicos da Água/análise
2.
Sci Total Environ ; 713: 136591, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31955095

RESUMO

The worldwide expansion of shale gas production and increased use of hydraulic fracturing have raised public concerns about safety and risks of groundwater resources in shale gas extraction areas. China has the largest shale gas resources in the world, most of which are located in the Sichuan Basin. Shale gas extraction in the Sichuan Basin has been increasing rapidly in recent years. However, the potential impact on shallow groundwater quality has not yet been systematically investigated. In order to evaluate the possible impact of shale gas extraction on groundwater quality, we present, for the first time, the hydrochemistry and Sr isotopic data of shallow groundwater, as well as flowback and produced water (FP water) in the Changning shale gas field in Sichuan Basin, one of the major shale gas fields in China. The Changning FP water is characterized by high salinity (TDS of 13,100-53,500 mg/L), Br/Cl (2.76 × 10-3) and 87Sr/86Sr (0.71849), which are distinguished from the produced waters from nearby conventional gas fields with higher Br/Cl (4.5 × 10-3) and lower 87Sr/86Sr (0.70830-0.71235). The shallow groundwater samples were collected from a Triassic karst aquifer in both active and nonactive shale gas extraction areas. They are dominated by low salinity (TDS of 145-1100 mg/L), Ca-HCO3 and Ca-Mg-HCO3 types water, which are common in carbonate karst aquifers. No statistical difference of the groundwater quality was observed between samples collected in active versus nonactive shale gas extraction areas. Out of 66 analyzed groundwater, three groundwater samples showed relatively higher salinity above the background level, with low 87Sr/86Sr (0.70824-0.7110) and Br/Cl (0.5-1.8 × 10-3) ratios relatively to FP water, excluding the possibility of contamination from FP water. None of the groundwater samples had detected volatile organic compounds (VOCs). The integration of geochemical and statistical analysis shows no direct evidence of groundwater contamination caused by shale gas development.

3.
Environ Sci Technol ; 52(24): 14519-14527, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30419747

RESUMO

Shale gas extraction through hydraulic fracturing and horizontal drilling is increasing in China, particularly in Sichuan Basin. Production of unconventional shale gas with minimal environmental effects requires adequate management of wastewater from flowback and produced water (FP water) that is coextracted with natural gas. Here we present, for the first time, inorganic chemistry and multiple isotope (oxygen, hydrogen, boron, strontium, radium) data for FP water from 13 shale gas wells from the Lower Silurian Longmaxi Formation in the Weiyuan gas field, as well as produced waters from 35 conventional gas wells from underlying (Sinian, Cambrian) and overlying (Permian, Triassic) formations in Sichuan Basin. The chemical and isotope data indicate that the formation waters in Sichuan Basin originated from relics of different stages of evaporated seawater modified by water-rock interactions. The FP water from shale gas wells derives from blending of injected hydraulic fracturing water and entrapped saline (Cl ∼ 50,000 mg/L) formation water. Variations in the chemistry, δ18O, δ11B, and 87Sr/86Sr of FP water over time indicate that the mixing between the two sources varies with time, with a contribution of 75% (first 6 months) to 20% (>year) of the injected hydraulic fracturing water in the blend that compose the FP water. Mass-balance calculation suggests that the returned hydraulic fracturing water consisted of 28-49% of the volume of the injected hydraulic fracturing water, about a year after the initial hydraulic fracturing. We show differential mobilization of Na, B, Sr, and Li from the shale rocks during early stages of operation, which resulted in higher Na/Cl, B/Cl, Li/Cl, and 87Sr/86Sr and lower δ11B of the FP water during early stages of FP water formation relative to the original saline formation water recorded in late stages FP water. This study provides a geochemical framework for characterization of formation waters from different geological strata, and thus the ability to distinguish between different sources of oil and gas wastewater in Sichuan Basin.


Assuntos
Poluentes Químicos da Água , China , Gás Natural , Campos de Petróleo e Gás , Águas Residuárias
4.
Sci Total Environ ; 630: 349-356, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29482143

RESUMO

Shale gas is likely to play a major role in China's transition away from coal. In addition to technological and infrastructural constraints, the main challenges to China's sustainable shale gas development are sufficient shale gas production, water availability, and adequate wastewater management. Here we present, for the first time, actual data of shale gas production and its water footprint from the Weiyuan gas field, one of the major gas fields in Sichuan Basin. We show that shale gas production rates during the first 12 months (24 million m3 per well) are similar to gas production rates in U.S. shale basins. The amount of water used for hydraulic fracturing (34,000 m3 per well) and the volume of flowback and produced (FP) water in the first 12 months (19,800 m3 per well) in Sichuan Basin are also similar to the current water footprints of hydraulic fracturing in U.S. basins. We present salinity data of the FP water (5000 to 40,000 mgCl/L) in Sichuan Basin and the treatment operations, which include sedimentation, dilution with fresh water, and recycling of the FP water for hydraulic fracturing. We utilize the water use data, empirical decline rates of shale gas and FP water productions in Sichuan Basin to generate two prediction models for water use for hydraulic fracturing and FP water production upon achieving China's goals to generate 100 billion m3 of shale gas by 2030. The first model utilizes the current water use and FP production data, and the second assumes a yearly 5% intensification of the hydraulic fracturing process. The predicted water use for hydraulic fracturing in 2030 (50-65 million m3 per year), FP water production (50-55 million m3 per year), and fresh water dilution of FP water (25 million m3 per year) constitute a water footprint that is much smaller than current water consumption and wastewater generation for coal mining, but higher than those of conventional gas production in China. Given estimates for water availability in Sichuan Basin, our predictions suggest that water might not be a limiting factor for future large-scale shale gas development in Sichuan Basin.

5.
Environ Sci Technol ; 50(6): 2837-45, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26881457

RESUMO

Unconventional shale gas development holds promise for reducing the predominant consumption of coal and increasing the utilization of natural gas in China. While China possesses some of the most abundant technically recoverable shale gas resources in the world, water availability could still be a limiting factor for hydraulic fracturing operations, in addition to geological, infrastructural, and technological barriers. Here, we project the baseline water availability for the next 15 years in Sichuan Basin, one of the most promising shale gas basins in China. Our projection shows that continued water demand for the domestic sector in Sichuan Basin could result in high to extremely high water stress in certain areas. By simulating shale gas development and using information from current water use for hydraulic fracturing in Sichuan Basin (20,000-30,000 m(3) per well), we project that during the next decade water use for shale gas development could reach 20-30 million m(3)/year, when shale gas well development is projected to be most active. While this volume is negligible relative to the projected overall domestic water use of ∼36 billion m(3)/year, we posit that intensification of hydraulic fracturing and water use might compete with other water utilization in local water-stress areas in Sichuan Basin.


Assuntos
Gás Natural , Campos de Petróleo e Gás , Água , China , Minerais , Gás Natural/análise , Indústria de Petróleo e Gás , Águas Residuárias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA