Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Alzheimers Dis ; 37(4): 795-808, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23948915

RESUMO

The intracellular accumulation of hyperphosphorylated tau plays a crucial role in neurodegeneration of Alzheimer's disease (AD), but the mechanism is not fully understood. From the observation that tau hyperphosphorylation renders cells more resistant to chemically-induced cell apoptosis, we have proposed that tau-involved apoptotic abortion may be the trigger of neurodegeneration. Here, we further studied whether this phenomenon is also applicable for the cell death induced by constitutively expressed factors, such as death-associated protein kinase 1 (DAPK1). We found that DAPK1 was upregulated and accumulated in the brain of human tau transgenic mice. Overexpression of DAPK1 in HEK293 and N2a cells decreased cell viability with activation of caspase-3, whereas simultaneous expression of tau antagonized DAPK1-induced apoptotic cell death. Expression of DAPK1 induced tau hyperphosphorylation at Thr231, Ser262, and Ser396 with no effects on protein phosphatase 2A, glycogen synthase kinase-3ß, protein kinase A, calcium/calmodulin dependent protein kinase II, cell division cycle 2, or cyclin dependent protein kinase 5. The phosphorylation level of microtubule affinity-regulating kinase 2 (MARK2) was increased by expression of DAPK1, but simultaneous downregulation of MARK2 did not affect the DAPK1-induced tau hyperphosphorylation. DAPK1 was co-immunoprecipitated with tau proteins both in vivo and in vitro, and expression of the kinase domain-truncated DAPK1 did not induce tau hyperphosphorylation. These data suggest that tau hyperphosphorylation at Thr231, Ser262, and Ser396 by DAPK1 renders the cells more resistant to the kinase-induced apoptotic cell death, providing new insights into the tau-involved apoptotic abortion in the course of chronic neurodegeneration.


Assuntos
Apoptose/fisiologia , Proteínas Quinases Associadas com Morte Celular/antagonistas & inibidores , Proteínas Quinases Associadas com Morte Celular/fisiologia , Proteínas tau/metabolismo , Animais , Encéfalo/enzimologia , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular Tumoral , Proteínas Quinases Associadas com Morte Celular/biossíntese , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Fosforilação/fisiologia , Regulação para Cima/genética , Proteínas tau/análise
2.
Biochim Biophys Acta ; 1833(5): 1235-43, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23428800

RESUMO

Protein phosphatase-2A (PP2A), an important phosphatase in dephosphorylating tau and preserving synapse, is significantly suppressed in Alzheimer's disease (AD), but the mechanism is not well understood. Here, we studied whether phosphotyrosyl phosphatase activator (PTPA) could activate PP2A by reducing its inhibitory phosphorylation at tyrosine 307 (P-PP2AC). We found that overexpression of PTPA activated PP2A by decreasing the level of P-PP2AC with reduced phosphorylation of tau, while knockdown of PTPA inhibited PP2A by increasing the level of P-PP2AC with enhanced tau phosphorylation. We also observed that expression of PTPA could upregulate the protein and mRNA levels of protein tyrosine phosphatase 1B (PTP1B) and simultaneous downregulation of PTP1B eliminated PTPA-induced PP2A activation. Importantly, we also found that the protein level of PTPA is downregulated in the brains of AD patients, and the AD transgenic mouse models with expression of mutant human amyloid precursor protein (hAPP) or the longest human tau (htau), respectively. Our data indicate that PTPA may activate PP2A through activating PTP1B and thus reducing the level of P-PP2AC, therefore upregulation of PTPA may represent a potential strategy in rescuing PP2A and arresting tau pathology in AD.


Assuntos
Doença de Alzheimer/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteína Fosfatase 2/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Regulação para Baixo , Humanos , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/patologia , Fosforilação , Tirosina/metabolismo , Regulação para Cima , Proteínas tau/metabolismo
3.
J Neurochem ; 124(3): 388-96, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23157378

RESUMO

Hyperhomocysteinemia (Hhcy) may induce memory deficits with ß-amyloid (Aß) accumulation and tau hyperphosphorylation. Simultaneous supplement of folate and vitamin B12 partially restored the plasma homocysteine level and attenuated tau hyperphosphorylation, Aß accumulation and memory impairments induced by Hhcy. However, folate and vitamin B12 treatment have no effects on Hhcy which has the methylenetetrahydrofolate reductase genotype mutation. In this study, we investigated the effects of simultaneous supplement of betaine on Alzheimer-like pathological changes and memory deficits in hyperhomocysteinemic rats after a 2-week induction by vena caudalis injection of homocysteine (Hcy). We found that supplementation of betaine could ameliorate the Hcy-induced memory deficits, enhance long-term potentiation (LTP) and increase dendritic branches numbers and the density of the dendritic spines, with up-regulation of NR1, NR2A, synaptotagmin, synaptophysin, and phosphorylated synapsin I protein levels. Supplementation of betaine also attenuated the Hcy-induced tau hyperphosphorylation at multiple AD-related sites through activation protein phosphatase-2A (PP2A) with decreased inhibitory demethylated PP2A(C) at Leu309 and phosphorylated PP2A(C) at Tyr307. In addition, supplementation of betaine also decreased Aß production with decreased presenilin-1 protein levels. Our data suggest that betaine could be a promising candidate for arresting Hcy-induced AD-like pathological changes and memory deficits.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Betaína/toxicidade , Homocisteína/toxicidade , Hiper-Homocisteinemia/tratamento farmacológico , Transtornos da Memória/tratamento farmacológico , Doença de Alzheimer/sangue , Animais , Modelos Animais de Doenças , Homocisteína/sangue , Hiper-Homocisteinemia/induzido quimicamente , Lipotrópicos/farmacologia , Masculino , Transtornos da Memória/induzido quimicamente , Ratos , Ratos Sprague-Dawley
4.
Mol Neurobiol ; 47(3): 883-91, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23242760

RESUMO

Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by intelligence decline, behavioral disorders and cognitive disability. The purpose of this study was to investigate gene expression in AD, based on published microarray data on Tg2576 mice. Hierarchical Cluster Analysis and Gene Ontology were employed to group genes together on the basis of their product characteristics and annotation data. Genes with prominent alterations were clustered into apoptosis and axon guidance pathways. Based on our findings and those of previous studies, we propose that the mitochondria-mediated apoptotic pathway plays a crucial role in the neuronal loss and synaptic dysfunction associated with AD. Furthermore, based on the findings of Positional Gene Enrichment analysis and Gene Set Enrichment analysis, we propose that the regulation of transcription of AD genes may be an important pathogenic factor in this neurodegenerative disease. Our results highlight the importance of genes that could subsequently be examined for their potential as prognostic markers for AD.


Assuntos
Perfilação da Expressão Gênica , Genoma/genética , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Apoptose/genética , Axônios/metabolismo , Sítios de Ligação/genética , Cromossomos de Mamíferos/genética , Análise por Conglomerados , Estresse do Retículo Endoplasmático/genética , Regulação da Expressão Gênica , Camundongos , Camundongos Transgênicos , Anotação de Sequência Molecular , Sequências Reguladoras de Ácido Nucleico/genética , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo
5.
Biochem J ; 437(2): 335-44, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21554241

RESUMO

GSK-3ß (glycogen synthase kinase-3ß), a crucial tau kinase, negatively regulates PP2A (protein phosphatase 2A), the most active tau phosphatase that is suppressed in the brain in AD (Alzheimer's disease). However, the molecular mechanism is not understood. In the present study we found that activation of GSK-3ß stimulates the inhibitory phosphorylation of PP2A at Tyr307 (pY307-PP2A), whereas inhibition of GSK-3ß decreased the level of pY307-PP2A both in vitro and in vivo. GSK-3ß is a serine/threonine kinase that can not phosphorylate tyrosine directly, therefore we measured PTP1B (protein tyrosine phosphatase 1B) and Src (a tyrosine kinase) activities. We found that GSK-3ß can modulate both PTP1B and Src protein levels, but it only inhibits PTP1B activity, with no effect on Src. Furthermore, only knockdown of PTP1B but not Src by siRNA (small interfering RNA) eliminates the effects of GSK-3ß on PP2A. GSK-3ß phosphorylates PTP1B at serine residues, and activation of GSK-3ß reduces the mRNA level of PTP1B. Additionally, we also observed that GSK-3 negatively regulates the protein and mRNA levels of PP2A, and knockdown of CREB (cAMP-response-element-binding protein) abolishes the increase in PP2A induced by GSK-3 inhibition. The results of the present study suggest that GSK-3ß inhibits PP2A by increasing the inhibitory Tyr307 phosphorylation and decreasing the expression of PP2A, and the mechanism involves inhibition of PTP1B and CREB.


Assuntos
Quinase 3 da Glicogênio Sintase/fisiologia , Proteína Fosfatase 2/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Quinases da Família src/metabolismo , Androstadienos/farmacologia , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Glicogênio Sintase Quinase 3 beta , Células HEK293 , Humanos , Indóis/farmacologia , Maleimidas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo , Ratos , Serina/metabolismo , Transcrição Gênica/efeitos dos fármacos , Tirosina/metabolismo , Wortmanina , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA