Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 223(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38536036

RESUMO

Organelles of the endomembrane system contain Rab GTPases as identity markers. Their localization is determined by guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). It remains largely unclear how these regulators are specifically targeted to organelles and how their activity is regulated. Here, we focus on the GAP Gyp7, which acts on the Rab7-like Ypt7 protein in yeast, and surprisingly observe the protein exclusively in puncta proximal to the vacuole. Mistargeting of Gyp7 to the vacuole strongly affects vacuole morphology, suggesting that endosomal localization is needed for function. In agreement, efficient endolysosomal transport requires Gyp7. In vitro assays reveal that Gyp7 requires a distinct lipid environment for membrane binding and activity. Overexpression of Gyp7 concentrates Ypt7 in late endosomes and results in resistance to rapamycin, an inhibitor of the target of rapamycin complex 1 (TORC1), suggesting that these late endosomes are signaling endosomes. We postulate that Gyp7 is part of regulatory machinery involved in late endosome function.


Assuntos
Endossomos , Proteínas de Saccharomyces cerevisiae , Proteínas rab de Ligação ao GTP , Proteínas Ativadoras de ras GTPase , Transporte Biológico , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Vacúolos , Proteínas Ativadoras de ras GTPase/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Nat Cell Biol ; 25(9): 1303-1318, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37563253

RESUMO

Cell growth is regulated by the mammalian/mechanistic target of rapamycin complex 1 (mTORC1), which functions both as a nutrient sensor and a master controller of virtually all biosynthetic pathways. This ensures that cells are metabolically active only when conditions are optimal for growth. Notably, although mTORC1 is known to regulate fatty acid biosynthesis, how and whether the cellular lipid biosynthetic capacity signals back to fine-tune mTORC1 activity remains poorly understood. Here we show that mTORC1 senses the capacity of a cell to synthesise fatty acids by detecting the levels of malonyl-CoA, an intermediate of this biosynthetic pathway. We find that, in both yeast and mammalian cells, this regulation is direct, with malonyl-CoA binding to the mTOR catalytic pocket and acting as a specific ATP-competitive inhibitor. When fatty acid synthase (FASN) is downregulated/inhibited, elevated malonyl-CoA levels are channelled to proximal mTOR molecules that form direct protein-protein interactions with acetyl-CoA carboxylase 1 (ACC1) and FASN. Our findings represent a conserved and unique homeostatic mechanism whereby impaired fatty acid biogenesis leads to reduced mTORC1 activity to coordinately link this metabolic pathway to the overall cellular biosynthetic output. Moreover, they reveal the existence of a physiological metabolite that directly inhibits the activity of a signalling kinase in mammalian cells by competing with ATP for binding.


Assuntos
Acetil-CoA Carboxilase , Malonil Coenzima A , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Malonil Coenzima A/metabolismo , Serina-Treonina Quinases TOR/genética , Ácidos Graxos/metabolismo , Mamíferos/metabolismo , Trifosfato de Adenosina
3.
J Fungi (Basel) ; 9(8)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37623558

RESUMO

Yeast cells are equipped with different nutrient signaling pathways that enable them to sense the availability of various nutrients and adjust metabolism and growth accordingly. These pathways are part of an intricate network since most of them are cross-regulated and subject to feedback regulation at different levels. In yeast, a central role is played by Sch9, a protein kinase that functions as a proximal effector of the conserved growth-regulatory TORC1 complex to mediate information on the availability of free amino acids. However, recent studies established that Sch9 is more than a TORC1-effector as its activity is tuned by several other kinases. This allows Sch9 to function as an integrator that aligns different input signals to achieve accuracy in metabolic responses and stress-related molecular adaptations. In this review, we highlight the latest findings on the structure and regulation of Sch9, as well as its role as a nutrient-responsive hub that impacts on growth and longevity of yeast cells. Given that most key players impinging on Sch9 are well-conserved, we also discuss how studies on Sch9 can be instrumental to further elucidate mechanisms underpinning healthy aging in mammalians.

4.
J Cell Sci ; 136(12)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37259913

RESUMO

The Saccharomyces cerevisiae casein kinase protein Yck3 is a central regulator at the vacuole that phosphorylates several proteins involved in membrane trafficking. Here, we set out to identify novel substrates of this protein. We found that endogenously tagged Yck3 localized not only at the vacuole, but also on endosomes. To disable Yck3 function, we generated a kinase-deficient mutant and thus identified the I-BAR-protein Ivy1 as a novel Yck3 substrate. Ivy1 localized to both endosomes and vacuoles, and Yck3 controlled this localization. A phosphomimetic Ivy1-SD mutant was found primarily on vacuoles, whereas its non-phosphorylatable SA variant strongly localized to endosomes, similar to what was observed upon deletion of Yck3. In vitro analysis revealed that Yck3-mediated phosphorylation strongly promoted Ivy1 recruitment to liposomes carrying the Rab7-like protein Ypt7. Modeling of Ivy1 with Ypt7 identified binding sites for Ypt7 and a positively charged patch, which were both required for Ivy1 localization. Strikingly, Ivy1 mutations in either site resulted in more cells with multilobed vacuoles, suggesting a partial defect in its membrane biogenesis. Our data thus indicate that Yck3-mediated phosphorylation controls both localization and function of Ivy1 in endolysosomal biogenesis.


Assuntos
Proteínas de Saccharomyces cerevisiae , Vacúolos , Vacúolos/metabolismo , Fosforilação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Endossomos/metabolismo , Caseína Quinases/metabolismo
5.
Elife ; 122023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36749016

RESUMO

The AMP-activated protein kinase (AMPK) and the target of rapamycin complex 1 (TORC1) are central kinase modules of two opposing signaling pathways that control eukaryotic cell growth and metabolism in response to the availability of energy and nutrients. Accordingly, energy depletion activates AMPK to inhibit growth, while nutrients and high energy levels activate TORC1 to promote growth. Both in mammals and lower eukaryotes such as yeast, the AMPK and TORC1 pathways are wired to each other at different levels, which ensures homeostatic control of growth and metabolism. In this context, a previous study (Hughes Hallett et al., 2015) reported that AMPK in yeast, that is Snf1, prevents the transient TORC1 reactivation during the early phase following acute glucose starvation, but the underlying mechanism has remained elusive. Using a combination of unbiased mass spectrometry (MS)-based phosphoproteomics, genetic, biochemical, and physiological experiments, we show here that Snf1 temporally maintains TORC1 inactive in glucose-starved cells primarily through the TORC1-regulatory protein Pib2. Our data, therefore, extend the function of Pib2 to a hub that integrates both glucose and, as reported earlier, glutamine signals to control TORC1. We further demonstrate that Snf1 phosphorylates the TORC1 effector kinase Sch9 within its N-terminal region and thereby antagonizes the phosphorylation of a C-terminal TORC1-target residue within Sch9 itself that is critical for its activity. The consequences of Snf1-mediated phosphorylation of Pib2 and Sch9 are physiologically additive and sufficient to explain the role of Snf1 in short-term inhibition of TORC1 in acutely glucose-starved cells.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Glucose/metabolismo , Mamíferos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Elife ; 112022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35904415

RESUMO

The essential biometal manganese (Mn) serves as a cofactor for several enzymes that are crucial for the prevention of human diseases. Whether intracellular Mn levels may be sensed and modulate intracellular signaling events has so far remained largely unexplored. The highly conserved target of rapamycin complex 1 (TORC1, mTORC1 in mammals) protein kinase requires divalent metal cofactors such as magnesium (Mg2+) to phosphorylate effectors as part of a homeostatic process that coordinates cell growth and metabolism with nutrient and/or growth factor availability. Here, our genetic approaches reveal that TORC1 activity is stimulated in vivo by elevated cytoplasmic Mn levels, which can be induced by loss of the Golgi-resident Mn2+ transporter Pmr1 and which depend on the natural resistance-associated macrophage protein (NRAMP) metal ion transporters Smf1 and Smf2. Accordingly, genetic interventions that increase cytoplasmic Mn2+ levels antagonize the effects of rapamycin in triggering autophagy, mitophagy, and Rtg1-Rtg3-dependent mitochondrion-to-nucleus retrograde signaling. Surprisingly, our in vitro protein kinase assays uncovered that Mn2+ activates TORC1 substantially better than Mg2+, which is primarily due to its ability to lower the Km for ATP, thereby allowing more efficient ATP coordination in the catalytic cleft of TORC1. These findings, therefore, provide both a mechanism to explain our genetic observations in yeast and a rationale for how fluctuations in trace amounts of Mn can become physiologically relevant. Supporting this notion, TORC1 is also wired to feedback control mechanisms that impinge on Smf1 and Smf2. Finally, we also show that Mn2+-mediated control of TORC1 is evolutionarily conserved in mammals, which may prove relevant for our understanding of the role of Mn in human diseases.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Trifosfato de Adenosina/metabolismo , Animais , Humanos , Mamíferos/metabolismo , Manganês/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Quinases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
J Cell Biol ; 221(5)2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35404387

RESUMO

The endomembrane system of eukaryotic cells is essential for cellular homeostasis during growth and proliferation. Previous work showed that a central regulator of growth, namely the target of rapamycin complex 1 (TORC1), binds both membranes of vacuoles and signaling endosomes (SEs) that are distinct from multivesicular bodies (MVBs). Interestingly, the endosomal TORC1, which binds membranes in part via the EGO complex, critically defines vacuole integrity. Here, we demonstrate that SEs form at a branch point of the biosynthetic and endocytic pathways toward the vacuole and depend on MVB biogenesis. Importantly, function of the HOPS tethering complex is essential to maintain the identity of SEs and proper endosomal and vacuolar TORC1 activities. In HOPS mutants, the EGO complex redistributed to the Golgi, which resulted in a partial mislocalization of TORC1. Our study uncovers that SE function requires a functional HOPS complex and MVBs, suggesting a tight link between trafficking and signaling along the endolysosomal pathway.


Assuntos
Endossomos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Fatores de Transcrição , Endossomos/genética , Endossomos/metabolismo , Complexo de Golgi , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vacúolos/metabolismo
8.
PLoS Genet ; 17(3): e1009414, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33690632

RESUMO

Indole-3-acetic acid (IAA) is the most common, naturally occurring phytohormone that regulates cell division, differentiation, and senescence in plants. The capacity to synthesize IAA is also widespread among plant-associated bacterial and fungal species, which may use IAA as an effector molecule to define their relationships with plants or to coordinate their physiological behavior through cell-cell communication. Fungi, including many species that do not entertain a plant-associated life style, are also able to synthesize IAA, but the physiological role of IAA in these fungi has largely remained enigmatic. Interestingly, in this context, growth of the budding yeast Saccharomyces cerevisiae is sensitive to extracellular IAA. Here, we use a combination of various genetic approaches including chemical-genetic profiling, SAturated Transposon Analysis in Yeast (SATAY), and genetic epistasis analyses to identify the mode-of-action by which IAA inhibits growth in yeast. Surprisingly, these analyses pinpointed the target of rapamycin complex 1 (TORC1), a central regulator of eukaryotic cell growth, as the major growth-limiting target of IAA. Our biochemical analyses further demonstrate that IAA inhibits TORC1 both in vivo and in vitro. Intriguingly, we also show that yeast cells are able to synthesize IAA and specifically accumulate IAA upon entry into stationary phase. Our data therefore suggest that IAA contributes to proper entry of yeast cells into a quiescent state by acting as a metabolic inhibitor of TORC1.


Assuntos
Fungos/efeitos dos fármacos , Fungos/enzimologia , Ácidos Indolacéticos/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Elementos de DNA Transponíveis , Relação Dose-Resposta a Droga , Ativação Enzimática , Fungos/genética , Ácidos Indolacéticos/química , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Inibidores de Proteínas Quinases/química , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Transdução de Sinais/efeitos dos fármacos
9.
Curr Biol ; 31(2): 297-309.e8, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33157024

RESUMO

Organelles of the endomembrane system maintain their identity and integrity during growth or stress conditions by homeostatic mechanisms that regulate membrane flux and biogenesis. At lysosomes and endosomes, the Fab1 lipid kinase complex and the nutrient-regulated target of rapamycin complex 1 (TORC1) control the integrity of the endolysosomal homeostasis and cellular metabolism. Both complexes are functionally connected as Fab1-dependent generation of PI(3,5)P2 supports TORC1 activity. Here, we identify Fab1 as a target of TORC1 on signaling endosomes, which are distinct from multivesicular bodies, and provide mechanistic insight into their crosstalk. Accordingly, TORC1 can phosphorylate Fab1 proximal to its PI3P-interacting FYVE domain, which causes Fab1 to shift to signaling endosomes, where it generates PI(3,5)P2. This, in turn, regulates (1) vacuole morphology, (2) recruitment of TORC1 and the TORC1-regulatory Rag GTPase-containing EGO complex to signaling endosomes, and (3) TORC1 activity. Thus, our study unravels a regulatory feedback loop between TORC1 and the Fab1 complex that controls signaling at endolysosomes.


Assuntos
Endossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Ensaios Enzimáticos , Retroalimentação Fisiológica , Fosforilação/fisiologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/isolamento & purificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Transdução de Sinais
10.
Microb Cell ; 5(11): 482-494, 2018 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-30483520

RESUMO

All proliferating cells need to match metabolism, growth and cell cycle progression with nutrient availability to guarantee cell viability in spite of a changing environment. In yeast, a signaling pathway centered on the effector kinase Snf1 is required to adapt to nutrient limitation and to utilize alternative carbon sources, such as sucrose and ethanol. Snf1 shares evolutionary conserved functions with the AMP-activated Kinase (AMPK) in higher eukaryotes which, activated by energy depletion, stimulates catabolic processes and, at the same time, inhibits anabolism. Although the yeast Snf1 is best known for its role in responding to a number of stress factors, in addition to glucose limitation, new unconventional roles of Snf1 have recently emerged, even in glucose repressing and unstressed conditions. Here, we review and integrate available data on conventional and non-conventional functions of Snf1 to better understand the complexity of cellular physiology which controls energy homeostasis.

11.
Biochim Biophys Acta Mol Cell Res ; 1865(12): 1901-1913, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30290237

RESUMO

Mitochondria play essential metabolic functions in eukaryotes. Although their major role is the generation of energy in the form of ATP, they are also involved in maintenance of cellular redox state, conversion and biosynthesis of metabolites and signal transduction. Most mitochondrial functions are conserved in eukaryotic systems and mitochondrial dysfunctions trigger several human diseases. By using multi-omics approach, we investigate the effect of methionine supplementation on yeast cellular metabolism, considering its role in the regulation of key cellular processes. Methionine supplementation induces an up-regulation of proteins related to mitochondrial functions such as TCA cycle, electron transport chain and respiration, combined with an enhancement of mitochondrial pyruvate uptake and TCA cycle activity. This metabolic signature is more noticeable in cells lacking Snf1/AMPK, the conserved signalling regulator of energy homeostasis. Remarkably, snf1Δ cells strongly depend on mitochondrial respiration and suppression of pyruvate transport is detrimental for this mutant in methionine condition, indicating that respiration mostly relies on pyruvate flux into mitochondrial pathways. These data provide new insights into the regulation of mitochondrial metabolism and extends our understanding on the role of methionine in regulating energy signalling pathways.


Assuntos
Metionina/metabolismo , Mitocôndrias/metabolismo , Proteínas Serina-Treonina Quinases/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Transporte Biológico , Metabolômica/métodos , Mutação , Proteínas Serina-Treonina Quinases/metabolismo , Ácido Pirúvico/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais
12.
Biomolecules ; 7(3)2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28788436

RESUMO

The evolutionarily conserved target of rapamycin complex 1 (TORC1) couples an array of intra- and extracellular stimuli to cell growth, proliferation and metabolism, and its deregulation is associated with various human pathologies such as immunodeficiency, epilepsy, and cancer. Among the diverse stimuli impinging on TORC1, amino acids represent essential input signals, but how they control TORC1 has long remained a mystery. The recent discovery of the Rag GTPases, which assemble as heterodimeric complexes on vacuolar/lysosomal membranes, as central elements of an amino acid signaling network upstream of TORC1 in yeast, flies, and mammalian cells represented a breakthrough in this field. Here, we review the architecture of the Rag GTPase signaling network with a special focus on structural aspects of the Rag GTPases and their regulators in yeast and highlight both the evolutionary conservation and divergence of the mechanisms that control Rag GTPases.


Assuntos
Aminoácidos/metabolismo , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Sequência Conservada , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Regulação da Expressão Gênica , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Modelos Moleculares , Leveduras/metabolismo
13.
Cell Discov ; 3: 17012, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28496991

RESUMO

Eukaryotic cell cycle progression through G1-S is driven by hormonal and growth-related signals that are transmitted by the target of rapamycin complex 1 (TORC1) pathway. In yeast, inactivation of TORC1 restricts G1-S transition due to the rapid clearance of G1 cyclins (Cln) and the stabilization of the B-type cyclin (Clb) cyclin-dependent kinase (CDK) inhibitor Sic1. The latter mechanism remains mysterious but requires the phosphorylation of Sic1-Thr173 by Mpk1 and inactivation of the Sic1-pThr173-targeting phosphatase (PP2ACdc55) through greatwall kinase-activated endosulfines. Here we show that the Sic1-pThr173 residue serves as a specific docking site for the CDK phospho-acceptor subunit Cks1 that sequesters, together with a C-terminal Clb5-binding motif in Sic1, Clb5-CDK-Cks1 complexes, thereby preventing them from flagging Sic1 for ubiquitin-dependent proteolysis. Interestingly, this functional switch of Sic1 from a target to an inhibitor of cyclin-CDK-Cks1 also operates in proliferating cells and is coordinated by the greatwall kinase, which responds to both Cln-CDK-dependent cell-cycle and TORC1-mediated nutritional cues.

14.
J Biol Chem ; 290(41): 24715-26, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26309257

RESUMO

In eukaryotes, nutrient availability and metabolism are coordinated by sensing mechanisms and signaling pathways, which influence a broad set of cellular functions such as transcription and metabolic pathways to match environmental conditions. In yeast, PKA is activated in the presence of high glucose concentrations, favoring fast nutrient utilization, shutting down stress responses, and boosting growth. On the contrary, Snf1/AMPK is activated in the presence of low glucose or alternative carbon sources, thus promoting an energy saving program through transcriptional activation and phosphorylation of metabolic enzymes. The PKA and Snf1/AMPK pathways share common downstream targets. Moreover, PKA has been reported to negatively influence the activation of Snf1/AMPK. We report a new cross-talk mechanism with a Snf1-dependent regulation of the PKA pathway. We show that Snf1 and adenylate cyclase (Cyr1) interact in a nutrient-independent manner. Moreover, we identify Cyr1 as a Snf1 substrate and show that Snf1 activation state influences Cyr1 phosphorylation pattern, cAMP intracellular levels, and PKA-dependent transcription.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Proteínas Quinases Ativadas por AMP/metabolismo , Biocatálise , Ativação Enzimática/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Glucose/farmacologia , Mutação , Fenótipo , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Transcrição Gênica/efeitos dos fármacos
15.
Biochim Biophys Acta ; 1853(7): 1615-25, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25841981

RESUMO

The metabolism of proliferating cells shows common features even in evolutionary distant organisms such as mammals and yeasts, for example the requirement for anabolic processes under tight control of signaling pathways. Analysis of the rewiring of metabolism, which occurs following the dysregulation of signaling pathways, provides new knowledge about the mechanisms underlying cell proliferation. The key energy regulator in yeast Snf1 and its mammalian ortholog AMPK have earlier been shown to have similar functions at glucose limited conditions and here we show that they also have analogies when grown with glucose excess. We show that loss of Snf1 in cells growing in 2% glucose induces an extensive transcriptional reprogramming, enhances glycolytic activity, fatty acid accumulation and reliance on amino acid utilization for growth. Strikingly, we demonstrate that Snf1/AMPK-deficient cells remodel their metabolism fueling mitochondria and show glucose and amino acids addiction, a typical hallmark of cancer cells.


Assuntos
Proteínas Quinases Ativadas por AMP/deficiência , Aminoácidos/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Proteínas Quinases Ativadas por AMP/metabolismo , Trifosfato de Adenosina/metabolismo , Biocatálise/efeitos dos fármacos , Carbono/metabolismo , Proliferação de Células , Reprogramação Celular/efeitos dos fármacos , Ciclo do Ácido Cítrico/efeitos dos fármacos , Ácidos Graxos/biossíntese , Fermentação/efeitos dos fármacos , Deleção de Genes , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Genes Fúngicos , Glucose/farmacologia , Ácido Glutâmico/metabolismo , Glicólise/efeitos dos fármacos , Glicólise/genética , Modelos Biológicos , Fosforilação Oxidativa/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Transcrição Gênica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
16.
Biochim Biophys Acta ; 1850(4): 620-7, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25512067

RESUMO

BACKGROUND: Yeast cells have developed a variety of mechanisms to regulate the activity of metabolic enzymes in order to adjust their metabolism in response to genetic and environmental perturbations. This can be achieved by a massive reprogramming of gene expression. However, the transcriptional response cannot explain the complexity of metabolic regulation, and mRNA stability regulation, non-covalent binding of allosteric effectors and post-translational modifications of enzymes (such as phosphorylation, acetylation and ubiquitination) are also involved, especially as short term responses, all converging in modulating enzyme activity. SCOPE OF REVIEW: The functional significance of post-translational modifications (PTMs) to the regulation of the central carbon metabolism is the subject of this review. MAJOR CONCLUSIONS: A genome wide analysis of PTMs indicates that several metabolic enzymes are subjected to multiple PTMs, suggesting that yeast cells can use different modifications and/or combinations of them to specifically respond to environmental changes. Glycolysis and fermentation are the pathways where phosphorylation, acetylation and ubiquitination are most frequent, while enzymes of storage carbohydrate metabolism are especially phosphorylated. Interestingly, some enzymes, such as the 6-phosphofructo-2-kinase Pfk26, the phosphofructokinases Pfk1 and Pfk2 and the pyruvate kinase Cdc19, are hubs of PTMs, thus representing central key regulation nodes. For the functionally better characterized enzymes, the role of phosphorylations and lysine modifications is discussed. GENERAL SIGNIFICANCE: This review focuses on the regulatory mechanisms of yeast carbon metabolism, highlighting the requirement of quantitative, systematical studies to better understand PTM contribution to metabolic regulation.


Assuntos
Carbono/metabolismo , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae/metabolismo , Regulação Alostérica , Fermentação , Gluconeogênese , Glicólise , Fosforilação , Estabilidade de RNA , Transcrição Gênica
17.
Biochim Biophys Acta ; 1833(12): 3254-3264, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24084603

RESUMO

Snf1, the yeast AMP-activated kinase homolog, regulates the expression of several genes involved in adaptation to glucose limitation and in response to cellular stresses. We previously demonstrated that Snf1 interacts with Swi6, the regulatory subunit of SBF and MBF complexes, and activates CLB5 transcription. Here we report that, in α-factor synchronized cells in 2% glucose, the loss of the Snf1 catalytic subunit impairs the binding of SBF and MBF complexes and the subsequent recruitment of the FACT complex and RNA Polymerase II to promoters of G1-genes. By using an analog-sensitive allele of SNF1, SNF1(as)(I132G), encoding a protein whose catalytic activity is selectively inhibited in vivo by 2-naphthylmethyl pyrazolopyrimidine 1, we show that the inhibition of Snf1 catalytic activity affects the expression of G1-genes causing a delayed entrance into S phase in cells synchronized in G1 phase by α-factor treatment or by elutriation. Moreover, Snf1 is detected in immune complexes of Rpb1, the large subunit of RNA Polymerase II, and is present at both promoters and coding regions of SBF- and MBF-regulated genes 20min after α-factor release, suggesting a direct role for Snf1 in the activation of the G1-regulon transcription.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Biocatálise/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Genes Fúngicos/genética , Glucose/farmacologia , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Fosfotreonina/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Transcrição Gênica/efeitos dos fármacos
18.
Eukaryot Cell ; 12(9): 1271-80, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23873864

RESUMO

In Saccharomyces cerevisiae, the entrance into S phase requires the activation of a specific burst of transcription, which depends on SBF (SCB binding factor, Swi4/Swi6) and MBF (MCB binding factor, Mbp1/Swi6) complexes. CK2 is a pleiotropic kinase involved in several cellular processes, including the regulation of the cell cycle. CK2 is composed of two catalytic subunits (α and α') and two regulatory subunits (ß and ß'), both of which are required to form the active holoenzyme. Here we investigate the function of the CK2 holoenzyme in Start-specific transcription. The ckb1Δ ckb2Δ mutant strain, bearing deletions of both genes encoding CK2 regulatory subunits, shows a delay of S-phase entrance due to a severe reduction of the expression of SBF- and MBF-dependent genes. This transcriptional defect is caused by an impaired recruitment of Swi6 and Swi4 to G1 gene promoters. Moreover, CK2 α and ß' subunits interact with RNA polymerase II, whose binding to G1 promoters is positively regulated by the CK2 holoenzyme. Collectively, these findings suggest a novel role for the CK2 holoenzyme in the activation of G1 transcription.


Assuntos
Caseína Quinase II/metabolismo , Regulação Fúngica da Expressão Gênica , Saccharomyces cerevisiae/metabolismo , Sítio de Iniciação de Transcrição , Caseína Quinase II/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fase G1 , Deleção de Genes , Holoenzimas/genética , Holoenzimas/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , RNA Polimerase II/metabolismo , Fase S , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA