Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Biol (Weinh) ; 7(6): e2200269, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36709481

RESUMO

Astrocytes are key regulators of brain homeostasis, equilibrating ion, water, and neurotransmitter concentrations and maintaining essential conditions for proper cognitive function. Recently, it has been shown that the excitability of the actin cytoskeleton manifests in second-scale dynamic fluctuations and acts as a sensor of chemophysical environmental cues. However, it is not known whether the cytoskeleton is excitable in astrocytes and how the homeostatic function of astrocytes is linked to the dynamics of the cytoskeleton. Here it is shown that homeostatic regulation involves the excitable dynamics of actin in certain subcellular regions of astrocytes, especially near the cell boundary. The results further indicate that actin dynamics concentrate into "hotspot" regions that selectively respond to certain chemophysical stimuli, specifically the homeostatic challenges of ion or water concentration increases. Substrate topography makes the actin dynamics of astrocytes weaker. Super-resolution images demonstrate that surface topography is also associated with the predominant perpendicular alignment of actin filaments near the cell boundary, whereas flat substrates result in an actin cortex mainly parallel to the cell boundary. Additionally, coculture with neurons increases both the probability of actin dynamics and the strength of hotspots. The excitable systems character of actin thus makes astrocytes direct participants in neural cell network dynamics.


Assuntos
Actinas , Astrócitos , Animais , Actinas/metabolismo , Astrócitos/metabolismo , Roedores/metabolismo , Células Cultivadas , Citoesqueleto/metabolismo
2.
Cell Biosci ; 12(1): 150, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36071478

RESUMO

BACKGROUND: Extracellular vesicles (EVs) are membrane-enclosed particles released systemically by all cells, including tumours. Tumour EVs have been shown to manipulate their local environments as well as distal targets to sustain the tumour in a variety of tumours, including glioblastoma (GBM). We have previously demonstrated the dual role of the glial water channel aquaporin-4 (AQP4) protein in glioma progression or suppression depending on its aggregation state. However, its possible role in communication mechanisms in the microenvironment of malignant gliomas remains to be unveiled. RESULTS: Here we show that in GBM cells AQP4 is released via EVs that are able to affect the GBM microenvironment. To explore this role, EVs derived from invasive GBM cells expressing AQP4-tetramers or apoptotic GBM cells expressing orthogonal arrays of particles (AQP4-OAPs) were isolated, using a differential ultracentrifugation method, and were added to pre-seeded GBM cells. Confocal microscopy analysis was used to visualize the interaction and uptake of AQP4-containing EVs by recipient cells. Chemoinvasion and Caspase3/7 activation assay, performed on recipient cells after EVs uptake, revealed that EVs produced by AQP4-tetramers expressing cells were able to drive surrounding tumour cells toward the migratory phenotype, whereas EVs produced by AQP4-OAPs expressing cells drive them toward the apoptosis pathway. CONCLUSION: This study demonstrates that the different GBM cell phenotypes can be transferred by AQP4-containing EVs able to influence tumour cell fate toward invasiveness or apoptosis. This study opens a new perspective on the role of AQP4 in the brain tumour microenvironment associated with the EV-dependent communication mechanism.

3.
Cancer Res ; 79(9): 2182-2194, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30877104

RESUMO

The glial water channel protein aquaporin-4 (AQP4) forms heterotetramers in the plasma membrane made of the M23-AQP4 and M1-AQP4 isoforms. The isoform ratio controls AQP4 aggregation into supramolecular structures called orthogonal arrays of particles (AQP4-OAP). The role of AQP4 aggregation into OAP in malignant gliomas is still unclear. In this study, we demonstrate that AQP4 aggregation/disaggregation into OAP influences the biology of glioma cells. Selective expression of the OAP-forming isoform M23-AQP4 (AQP4-OAP) triggered cell shape changes in glioma cells associated with alterations to the F-actin cytoskeleton that affected apoptosis. By contrast, expression of M1-AQP4 (AQP4-tetramers), which is unable to aggregate into OAP, ameliorated glioma cell invasiveness, improved cell migration, and increased methalloproteinase-9 activity. Two prolines (254 and 296) at the C-terminus tail were shown to be important in mediating the relationship between the actin cytoskeleton and AQP4-OAP and AQP4-tetramers. In conclusion, this study demonstrates that AQP4 aggregation state might be an important determinant in orienting glioma cells to persist or perish. AQP4 disaggregation may potentiate invasiveness potential, whereas AQP4 aggregation may activate the apoptotic path. This study shows a new perspective on the role of AQP4 in brain tumors not necessarily associated with edema formation but with AQP4 aggregation/disaggregation dynamics and their link with the actin cytoskeleton. SIGNIFICANCE: This study demonstrates how AQP4 aggregation influences plasma membrane dynamics to alter cell proliferation, invasiveness, migration, and apoptotic potential in glioma cells.


Assuntos
Aquaporina 4/química , Membrana Celular/metabolismo , Forma Celular , Glioma/patologia , Animais , Aquaporina 4/genética , Aquaporina 4/metabolismo , Proliferação de Células , Glioma/genética , Glioma/metabolismo , Humanos , Camundongos , Camundongos Knockout , Conformação Proteica , Multimerização Proteica , Ratos , Células Tumorais Cultivadas
4.
J Mol Med (Berl) ; 91(5): 613-23, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23197380

RESUMO

Prohibiting angiogenesis is an important therapeutic approach for fighting cancer and other angiogenic related diseases. Research focused on proteins that regulate abnormal angiogenesis has attracted intense interest in both academia and industry. Such proteins are able to target several angiogenic factors concurrently, thereby increasing the possibility of therapeutic success. Aquaporin-1 (AQP1) is a water channel membrane protein that promotes tumour angiogenesis by allowing faster endothelial cell migration. In this study we test the hypothesis that AQP1 inhibition impairs tumour growth in a mouse model of melanoma. After validating the inhibitor efficacy of two different AQP1 specific siRNAs in cell cultures, RNA interference experiments were performed by intratumoural injections of AQP1 siRNAs in mice. After 6 days of treatment, AQP1 siRNA treated tumours showed a 75 % reduction in volume when compared to controls. AQP1 protein level, in AQP1 knockdown tumours, was around 75 % that of the controls and was associated with a significant 40 % reduced expression of the endothelial marker, Factor VIII. Immunofluorescence analysis of AQP1 siRNA treated tumours showed a significantly lower microvessel density. Time course experiments demonstrated that repeated injections of AQP1 siRNA over time are effective in sustaining the inhibition of tumour growth. Finally, we have confirmed the role of AQP1 in sustaining an active endothelium during angiogenesis and we have shown that AQP1 reduction causes an increase in VEGF levels. In conclusion, this study validates AQP1 as a pro-angiogenic protein, relevant for the therapy of cancer and other angiogenic-related diseases such as psoriasis, endometriosis, arthritis and atherosclerosis.


Assuntos
Aquaporina 1/genética , Melanoma Experimental/irrigação sanguínea , Melanoma Experimental/genética , RNA Interferente Pequeno/genética , Neoplasias Cutâneas/irrigação sanguínea , Neoplasias Cutâneas/genética , Animais , Aquaporina 1/antagonistas & inibidores , Aquaporina 1/metabolismo , Biomarcadores/metabolismo , Proliferação de Células , Fator VIII/genética , Fator VIII/metabolismo , Expressão Gênica , Células HeLa , Humanos , Injeções Intralesionais , Masculino , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular , Neovascularização Patológica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Neoplasias Cutâneas/patologia , Carga Tumoral , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Muscle Nerve ; 35(5): 625-31, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17266129

RESUMO

Aquaporin-4 (AQP4) is the neuromuscular water channel expressed at the sarcolemma of mammalian fast-twitch fibers that mediates a high water transport rate, which is important during muscle activity. Clinical interest in the neuromuscular expression of AQP4 has increased as it is associated with the protein complex formed by dystrophin, the product of the gene affected in Duchenne muscular dystrophy. The expression of AQP4 during development has not been characterized. In this study, we analyzed the expression of AQP4 in extensor digitorum longus (EDL) and soleus, a fast- and slow-twitch muscle, respectively, during the first weeks after birth. The results show that AQP4 expression in both types of skeletal muscle occurs postnatally. The time course of expression of AQP4 in the two types of muscles was also different. Whereas the expression of AQP4 protein levels in the EDL showed a progressive increase during the first month after birth, reaching levels found in adults by day 24, the levels of the protein in the soleus showed a transient peak between day 12 and day 24 and declined thereafter, an effect that may be related to the transient high number of fast motor units innervating the soleus muscle during this time. The results suggest that AQP4 expression in skeletal muscle is under neuronal influence and contribute to the understanding of the molecular events of fiber differentiation during development.


Assuntos
Aquaporina 4/metabolismo , Desenvolvimento Muscular , Músculo Esquelético/crescimento & desenvolvimento , Animais , Aquaporina 4/análise , Aquaporina 4/genética , Masculino , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Músculo Esquelético/inervação , Músculo Esquelético/metabolismo , Neurônios/metabolismo , Neurônios/fisiologia , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Ratos
6.
Invest Ophthalmol Vis Sci ; 46(10): 3869-75, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16186376

RESUMO

PURPOSE: In adult retina, aquaporin-4 (AQP4) and inwardly rectifying K(+) (Kir4.1) channels localize to astrocyte and Müller cell membranes facing vascular and vitreous compartments, optimizing clearance of extracellular K(+) and water from the synaptic layers. However, it is unknown whether these channels are expressed at early developmental stages, before gliogenesis or angiogenesis take place in the neural retina. This study was conducted to determine the presence of AQP4 and Kir4.1 proteins in the developing mouse retina. METHODS: Simultaneous AQP4 and Kir4.1 immunodetection was performed in postnatal mice 1, 9, 15, and 30 days of age. Confocal microscopy was used to identify the cellular distribution of AQP4 and Kir4.1 proteins, as well as their coexpression with the cell-selective immunomarkers Prox-1, calbindin, and neurofilament. RESULTS: AQP4 and Kir4.1 proteins were coexpressed in calbindin- and Prox1-expressing retinal neurons at birth. These neurons were identified as horizontal cells based on their position and morphology. By P15, when vision starts, AQP4 and Kir4.1 localization coordinately switched from horizontal cells to Müller glial cells. CONCLUSIONS: The findings showed that AQP4 and Kir4.1 protein expression is confined to differentiating horizontal cells before its expression in Müller cells. The finding of AQP4 in neurons is novel, since AQP4 expression within the central nervous system is restricted to glia. Also, the results demonstrated that AQP4 is a horizontal cell-specific immunomarker in neonatal retina. The transitory coexpression of AQP4 and Kir4.1 proteins by differentiating horizontal interneurons suggests that these cells mediate K(+) and water transcellular uptake until the initiation of phototransduction, when glial cells assume these functions.


Assuntos
Aquaporina 4/metabolismo , Proteínas do Olho/metabolismo , Neuroglia/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Retina/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Calbindinas , Técnica Indireta de Fluorescência para Anticorpo , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Proteínas de Neurofilamentos/metabolismo , Retina/citologia , Retina/metabolismo , Proteína G de Ligação ao Cálcio S100/metabolismo , Proteínas Supressoras de Tumor , Equilíbrio Hidroeletrolítico
7.
FASEB J ; 19(12): 1674-6, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16103109

RESUMO

Aquaporin-4 (AQP4), the main water channel in the brain, is expressed in the perivascular membranes of mouse, rat, and human astrocytes. In a previous study, we used small interfering RNA (siRNA) to specifically knock down AQP4 in rat astrocyte primary cultures and found that together with reduced osmotic permeability, AQP4 knockdown (KD) led to altered cell morphology. However, a recent report on primary cultured astrocytes from AQP4 null mice (KO) showed no morphological differences compared with wild types. In this study, we compared the effect of AQP4 KD in mouse, rat, and human astrocyte primary cultures and found that AQP4 KD in human astrocytes resulted in a morphological phenotype similar to that found in rat. In contrast, AQP4 KD in mouse astrocytes caused only very mild morphological changes. The actin cytoskeleton of untreated astrocytes exhibited strong species-specific differences, with F-actin being organized in cortical bands in mouse and in stress fibers in rat and human astrocytes. Surprisingly, as a consequence of AQP4 KD, F-actin cytoskeleton was depolymerized in rat and human whereas it was completely rearranged in mouse astrocytes. Although AQP4 KD induced alterations of the cell cytoskeleton, we found that the expression of dystrophin (DP71), beta-dystroglycan, and alpha-syntrophin was not altered. AQP4 KD in cultured mouse astrocytes produced strong down-regulation of connexin43 (Cx43) with a concomitant reduction in cell coupling while no major alterations in Cx43 expression were found in rat and human cells. Taken together, these results demonstrate that with regard to these properties, human astrocytes in culture are more similar to rat than to mouse astrocytes. Moreover, even though AQP4 KD in mouse astrocytes did not result in a dramatic morphological phenotype, it induced a remarkable rearrangement of F-actin, not related to disruption of the dystrophin complex, indicating a primary role of this water channel in the cytoskeleton changes observed. Finally, the strong down-regulation of Cx43 and cell coupling in AQP4 KD mouse astrocytes indicate that a functional relationship likely exists between water channels and gap junctions in brain astrocytes.


Assuntos
Aquaporina 4/fisiologia , Astrócitos/metabolismo , Conexina 43/biossíntese , Citoesqueleto/metabolismo , Actinas/metabolismo , Animais , Western Blotting , Encéfalo/metabolismo , Linhagem Celular , Células Cultivadas , Conexina 43/química , Regulação para Baixo , Distrofina/metabolismo , Eletrofisiologia , Junções Comunicantes/metabolismo , Inativação Gênica , Humanos , Camundongos , Microscopia de Fluorescência , Modelos Biológicos , Técnicas de Patch-Clamp , Fenótipo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Especificidade da Espécie , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA