Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 4331, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383709

RESUMO

Insulin and insulin-like growth factor 1 (IGF-1) are metabolic hormones with known effects on CD4+ T cells through insulin receptor (IR) and IGF-1 receptor (IGF-1R) signaling. Here, we describe specific and distinct roles for these hormones and receptors. We have found that IGF-1R, but not IR, expression is increased following CD4+ T cell activation or following differentiation toward Th17 cells. Although both insulin and IGF-1 increase the metabolism of CD4+ T cells, insulin has a more potent effect. However, IGF-1 has a unique role and acts specifically on Th17 cells to increase IL-17 production and Th17 cell metabolism. Furthermore, IGF-1 decreases mitochondrial membrane potential and mitochondrial reactive oxygen species (mROS) in Th17 cells, providing a cytoprotective effect. Interestingly, both IR and IGF-1R are required for this effect of IGF-1 on mitochondria, which suggests that the hybrid IR/IGF-1R may be required for mediating the effect of IGF-1 on mitochondrial membrane potential and mROS production.


Assuntos
Fator de Crescimento Insulin-Like I , Insulina , Fator de Crescimento Insulin-Like I/metabolismo , Insulina/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Transdução de Sinais , Mitocôndrias/metabolismo , Linfócitos T CD4-Positivos/metabolismo
2.
PLoS One ; 18(6): e0286470, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37276236

RESUMO

BACKGROUND/OBJECTIVES: Leptin is an adipokine secreted in proportion to adipocyte mass and is therefore increased in obesity. Leptin signaling has been shown to directly promote inflammatory T helper 1 (Th1) and T helper 17 (Th17) cell number and function. Since T cells have a critical role in driving inflammation and systemic glucose intolerance in obesity, we sought to determine the role of leptin signaling in this context. METHODS: Male and female T cell-specific leptin receptor knockout mice and littermate controls were placed on low-fat diet or high-fat diet to induce obesity for 18 weeks. Weight gain, serum glucose levels, systemic glucose tolerance, T cell metabolism, and T cell differentiation and cytokine production were examined. RESULTS: In both male and female mice, T cell-specific leptin receptor deficiency did not reverse impaired glucose tolerance in obesity, although it did prevent impaired fasting glucose levels in obese mice compared to littermate controls, in a sex dependent manner. Despite these minimal effects on systemic metabolism, T cell-specific leptin signaling was required for changes in T cell metabolism, differentiation, and cytokine production observed in mice fed high-fat diet compared to low-fat diet. Specifically, we observed increased T cell oxidative metabolism, increased CD4+ T cell IFN-γ expression, and increased proportion of T regulatory (Treg) cells in control mice fed high-fat diet compared to low-fat diet, which were not observed in the leptin receptor conditional knockout mice, suggesting that leptin receptor signaling is required for some of the inflammatory changes observed in T cells in obesity. CONCLUSIONS: T cell-specific deficiency of leptin signaling alters T cell metabolism and function in obesity but has minimal effects on obesity-associated systemic metabolism. These results suggest a redundancy in cytokine receptor signaling pathways in response to inflammatory signals in obesity.


Assuntos
Intolerância à Glucose , Leptina , Animais , Feminino , Masculino , Camundongos , Citocinas , Dieta Hiperlipídica/efeitos adversos , Glucose/metabolismo , Leptina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Receptores para Leptina/genética
3.
Sci Rep ; 12(1): 850, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039539

RESUMO

Immunity Related GTPases (IRG) are a family of proteins produced during infection that regulate membrane remodeling events in cells, particularly autophagy and mitophagy. The human IRGM gene has been strongly associated with Crohn's disease and other inflammatory diseases through Genome-Wide Association studies. Absence of Irgm1 in mice prompts intestinal inflammation, autoimmunity, and impaired immune control of pathogenic bacteria and protozoa. Although prior work has focused on a prominent role for IRGM/Irgm1 in regulating macrophage function, the work described here addresses a potential role of Irgm1 in regulating the function of mature T cells. Irgm1 was found to be highly expressed in T cells in a manner that varied with the particular T cell subset and increased with activation. Mice with a complete lack of Irgm1, or a conditional lack of Irgm1 specifically in T cells, displayed numerous changes in T cell numbers and function in all subsets examined, including CD4+ (Th1 and Treg) and CD8+ T cells. Related to changes in T cell number, apoptosis was found to be increased in Irgm1-deficient CD4+ and CD8+ T cells. Altered T cell metabolism appeared to be a key driver of the phenotypes: Glucose metabolism and glycolysis were increased in Irgm1-deficient CD4+ and CD8+ T cells, and muting these effects with glycolytic inhibitors partially restored T cell function and viability.


Assuntos
Proteínas de Ligação ao GTP/fisiologia , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/fisiologia , Animais , Apoptose/genética , Autofagia/genética , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Células Cultivadas , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Expressão Gênica/genética , Glucose/metabolismo , Glicólise , Ativação Linfocitária/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Subpopulações de Linfócitos T/imunologia
4.
Cell Rep ; 37(4): 109880, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34706244

RESUMO

Targeting mitochondrial metabolism has emerged as a treatment option for cancer patients. The ABL tyrosine kinases promote metastasis, and enhanced ABL signaling is associated with a poor prognosis in lung adenocarcinoma patients. Here we show that ABL kinase allosteric inhibitors impair mitochondrial integrity and decrease oxidative phosphorylation. To identify metabolic vulnerabilities that enhance this phenotype, we utilized a CRISPR/Cas9 loss-of-function screen and identified HMG-CoA reductase, the rate-limiting enzyme of the mevalonate pathway and target of statin therapies, as a top-scoring sensitizer to ABL inhibition. Combination treatment with ABL allosteric inhibitors and statins decreases metastatic lung cancer cell survival in vitro in a synergistic manner. Notably, combination therapy in mouse models of lung cancer brain metastasis and therapy resistance impairs metastatic colonization with a concomitant increase in animal survival. Thus, metabolic combination therapy might be effective to decrease metastatic outgrowth, leading to increased survival for lung cancer patients with advanced disease.


Assuntos
Apoptose/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Oncogênicas v-abl/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/genética , Animais , Apoptose/genética , Linhagem Celular Tumoral , Sinergismo Farmacológico , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Metástase Neoplásica , Proteínas Oncogênicas v-abl/genética , Proteínas Oncogênicas v-abl/metabolismo , Transdução de Sinais/genética , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Int J Obes (Lond) ; 44(12): 2419-2429, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33037327

RESUMO

BACKGROUND: Obesity is associated with impaired primary and secondary immune responses to influenza infection, with T cells playing a critical role. T-cell function is highly influenced by the cellular metabolic state; however, it remains unknown how altered systemic metabolism in obesity alters T-cell metabolism and function to influence immune response. Our objective was to identify the altered cellular metabolic state of T cells from obese mice so that we may target T-cell metabolism to improve immune response to infection. METHODS: Mice were fed normal chow or high-fat diet for 18-19 weeks. Changes in T-cell populations were analyzed in both adipose tissue and spleens using flow cytometry. Splenic T cells were further analyzed for nutrient uptake and extracellular metabolic flux. As changes in T-cell mitochondrial oxidation were observed in obesity, obese mice were treated with metformin for 6 weeks and compared to lean control mice or obese mice undergoing weight loss through diet switch; immunity was measured by survival to influenza infection. RESULTS: We found changes in T-cell populations in adipose tissue of high-fat diet-induced obese mice, characterized by decreased proportions of Treg cells and increased proportions of CD8+ T cells. Activated CD4+ T cells from obese mice had increased glucose uptake and oxygen consumption rate (OCR), compared to T cells from lean controls, indicating increased mitochondrial oxidation of glucose. Treatment of isolated CD4+ T cells with metformin was found to inhibit OCR in vitro and alter the expression of several activation markers. Last, treatment of obese mice with metformin, but not weight loss, was able to improve survival to influenza in obesity. CONCLUSIONS: T cells from obese mice have an altered metabolic profile characterized by increased glucose oxidation, which can be targeted to improve survival against influenza infection.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Obesidade/imunologia , Infecções por Orthomyxoviridae/imunologia , Estresse Oxidativo , Tecido Adiposo/imunologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Células Cultivadas , Dieta Hiperlipídica , Vírus da Influenza A Subtipo H1N1 , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Baço/imunologia
6.
Cell Metab ; 29(5): 1217-1231.e7, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30773463

RESUMO

Crosstalk between metabolic and survival pathways is critical for cellular homeostasis, but the connectivity between these processes remains poorly defined. We used loss-of-function CRISPR/Cas9 knockout screening to identify metabolic genes capable of influencing cellular commitment to apoptosis, using sensitization to the BCL-2 inhibitor ABT-199 in BCL-2-dependent acute myeloid leukemia (AML) cell lines as a proxy for apoptotic disposition. This analysis revealed metabolic pathways that specifically cooperate with BCL-2 to sustain survival. In particular, our analysis singled out heme biosynthesis as an unappreciated apoptosis-modifying pathway. Although heme is broadly incorporated into the proteome, reduction of heme biosynthesis potentiates apoptosis through the loss of ETC activity, resulting in baseline depolarization of the mitochondrial membrane and an increased propensity to undergo apoptosis. Collectively, our findings chart the first apoptotic map of metabolism, motivating the design of metabolically engaged combination chemotherapies and nominating heme biosynthesis as an apoptotic modulator in AML.


Assuntos
Apoptose/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Heme/biossíntese , Leucemia Mieloide Aguda/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Antineoplásicos/farmacologia , Apoptose/genética , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Transporte de Elétrons , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Leucemia Mieloide Aguda/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Sulfonamidas/farmacologia , Células THP-1 , Transdução Genética
7.
J Infect Dis ; 219(10): 1652-1661, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-30535161

RESUMO

BACKGROUND: Obesity is an independent risk factor for increased influenza mortality and is associated with impaired memory T-cell response, resulting in increased risk of infection. In this study, we investigated if weight loss would restore memory T-cell response to influenza. METHODS: Male C57BL/6J mice were fed either low-fat or high-fat diet to induce obesity. Once obesity was established, all mice received primary infection with influenza X-31. Following a recovery period, we switched half of the obese group to a low-fat diet to induce weight loss. Fifteen weeks after diet switch, all mice were given a secondary infection with influenza PR8, and memory T-cell function and T-cell metabolism were measured. RESULTS: Following secondary influenza infection, memory T-cell subsets in the lungs of obese mice were decreased compared to lean mice. At the same time, T cells from obese mice were found to have altered cellular metabolism, largely characterized by an increase in oxygen consumption. Neither impaired memory T-cell response nor altered T-cell metabolism was reversed with weight loss. CONCLUSION: Obesity-associated changes in T-cell metabolism are associated with impaired T-cell response to influenza, and are not reversed with weight loss.


Assuntos
Memória Imunológica/fisiologia , Obesidade/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Dieta Hiperlipídica , Vírus da Influenza A , Masculino , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/imunologia , Consumo de Oxigênio , Redução de Peso/fisiologia
8.
J Biol Chem ; 292(11): 4651-4662, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28154172

RESUMO

The immunity-related GTPases (IRGs) are a family of proteins that are induced by interferon (IFN)-γ and play pivotal roles in immune and inflammatory responses. IRGs ostensibly function as dynamin-like proteins that bind to intracellular membranes and promote remodeling and trafficking of those membranes. Prior studies have shown that loss of Irgm1 in mice leads to increased lethality to bacterial infections as well as enhanced inflammation to non-infectious stimuli; however, the mechanisms underlying these phenotypes are unclear. In the studies reported here, we found that uninfected Irgm1-deficient mice displayed high levels of serum cytokines typifying profound autoinflammation. Similar increases in cytokine production were also seen in cultured, IFN-γ-primed macrophages that lacked Irgm1. A series of metabolic studies indicated that the enhanced cytokine production was associated with marked metabolic changes in the Irgm1-deficient macrophages, including increased glycolysis and an accumulation of long chain acylcarnitines. Cells were exposed to the glycolytic inhibitor, 2-deoxyglucose, or fatty acid synthase inhibitors to perturb the metabolic alterations, which resulted in dampening of the excessive cytokine production. These results suggest that Irgm1 deficiency drives metabolic dysfunction in macrophages in a manner that is cell-autonomous and independent of infectious triggers. This may be a significant contributor to excessive inflammation seen in Irgm1-deficient mice in different contexts.


Assuntos
Citocinas/imunologia , Proteínas de Ligação ao GTP/genética , Macrófagos/imunologia , Animais , Autofagia , Células Cultivadas , Proteínas de Ligação ao GTP/imunologia , Deleção de Genes , Glicólise , Inflamação/genética , Inflamação/imunologia , Interferon gama/imunologia , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos
9.
Nat Immunol ; 17(12): 1459-1466, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27695003

RESUMO

CD4+ effector T cells (Teff cells) and regulatory T cells (Treg cells) undergo metabolic reprogramming to support proliferation and immunological function. Although signaling via the lipid kinase PI(3)K (phosphatidylinositol-3-OH kinase), the serine-threonine kinase Akt and the metabolic checkpoint kinase complex mTORC1 induces both expression of the glucose transporter Glut1 and aerobic glycolysis for Teff cell proliferation and inflammatory function, the mechanisms that regulate Treg cell metabolism and function remain unclear. We found that Toll-like receptor (TLR) signals that promote Treg cell proliferation increased PI(3)K-Akt-mTORC1 signaling, glycolysis and expression of Glut1. However, TLR-induced mTORC1 signaling also impaired Treg cell suppressive capacity. Conversely, the transcription factor Foxp3 opposed PI(3)K-Akt-mTORC1 signaling to diminish glycolysis and anabolic metabolism while increasing oxidative and catabolic metabolism. Notably, Glut1 expression was sufficient to increase the number of Treg cells, but it reduced their suppressive capacity and Foxp3 expression. Thus, inflammatory signals and Foxp3 balance mTORC1 signaling and glucose metabolism to control the proliferation and suppressive function of Treg cells.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Reguladores/imunologia , Receptores Toll-Like/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Transportador de Glucose Tipo 1/genética , Glicólise , Tolerância Imunológica , Alvo Mecanístico do Complexo 1 de Rapamicina , Metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Complexos Multiproteicos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
10.
Eur J Immunol ; 46(8): 1970-83, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27222115

RESUMO

Upon activation, T cells require energy for growth, proliferation, and function. Effector T (Teff) cells, such as Th1 and Th17 cells, utilize high levels of glycolytic metabolism to fuel proliferation and function. In contrast, Treg cells require oxidative metabolism to fuel suppressive function. It remains unknown how Teff/Treg-cell metabolism is altered when nutrients are limited and leptin levels are low. We therefore examined the role of malnutrition and associated hypoleptinemia on Teff versus Treg cells. We found that both malnutrition-associated hypoleptinemia and T cell-specific leptin receptor knockout suppressed Teff-cell number, function, and glucose metabolism, but did not alter Treg-cell metabolism or suppressive function. Using the autoimmune mouse model EAE, we confirmed that fasting-induced hypoleptinemia altered Teff-cell, but not Treg-cell, glucose metabolism, and function in vivo, leading to decreased disease severity. To explore potential mechanisms, we examined HIF-1α, a key regulator of Th17 differentiation and Teff-cell glucose metabolism, and found HIF-1α expression was decreased in T cell-specific leptin receptor knockout Th17 cells, and in Teff cells from fasted EAE mice, but was unchanged in Treg cells. Altogether, these data demonstrate a selective, cell-intrinsic requirement for leptin to upregulate glucose metabolism and maintain function in Teff, but not Treg cells.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Leptina/administração & dosagem , Desnutrição , Linfócitos T Reguladores/metabolismo , Células Th17/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Glicólise , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
11.
Cell Metab ; 23(4): 649-62, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27076078

RESUMO

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy associated with Notch pathway mutations. While both normal activated and leukemic T cells can utilize aerobic glycolysis to support proliferation, it is unclear to what extent these cell populations are metabolically similar and if differences reveal T-ALL vulnerabilities. Here we show that aerobic glycolysis is surprisingly less active in T-ALL cells than proliferating normal T cells and that T-ALL cells are metabolically distinct. Oncogenic Notch promoted glycolysis but also induced metabolic stress that activated 5' AMP-activated kinase (AMPK). Unlike stimulated T cells, AMPK actively restrained aerobic glycolysis in T-ALL cells through inhibition of mTORC1 while promoting oxidative metabolism and mitochondrial Complex I activity. Importantly, AMPK deficiency or inhibition of Complex I led to T-ALL cell death and reduced disease burden. Thus, AMPK simultaneously inhibits anabolic growth signaling and is essential to promote mitochondrial pathways that mitigate metabolic stress and apoptosis in T-ALL.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Glicólise , Mitocôndrias/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos Endogâmicos C57BL , Mitocôndrias/patologia , Complexos Multiproteicos/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Receptores Notch/metabolismo , Transdução de Sinais , Estresse Fisiológico , Linfócitos T/metabolismo , Linfócitos T/patologia , Serina-Treonina Quinases TOR/metabolismo
12.
Radiat Res ; 183(6): 594-609, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25973951

RESUMO

Hypoxia is a major cause of radiation resistance, which may predispose to local recurrence after radiation therapy. While hypoxia increases tumor cell survival after radiation exposure because there is less oxygen to oxidize damaged DNA, it remains unclear whether signaling pathways triggered by hypoxia contribute to radiation resistance. For example, intratumoral hypoxia can increase hypoxia inducible factor 1 alpha (HIF-1α), which may regulate pathways that contribute to radiation sensitization or radiation resistance. To clarify the role of HIF-1α in regulating tumor response to radiation, we generated a novel genetically engineered mouse model of soft tissue sarcoma with an intact or deleted HIF-1α. Deletion of HIF-1α sensitized primary sarcomas to radiation exposure in vivo. Moreover, cell lines derived from primary sarcomas lacking HIF-1α, or in which HIF-1α was knocked down, had decreased clonogenic survival in vitro, demonstrating that HIF-1α can promote radiation resistance in a cell autonomous manner. In HIF-1α-intact and -deleted sarcoma cells, radiation-induced reactive oxygen species, DNA damage repair and activation of autophagy were similar. However, sarcoma cells lacking HIF-1α had impaired mitochondrial biogenesis and metabolic response after irradiation, which might contribute to radiation resistance. These results show that HIF-1α promotes radiation resistance in a cell autonomous manner.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Sarcoma/metabolismo , Sarcoma/radioterapia , Animais , Linhagem Celular Tumoral , Quimiorradioterapia , Técnicas de Silenciamento de Genes , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/deficiência , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Tamanho Mitocondrial/genética , Tamanho Mitocondrial/efeitos da radiação , Tolerância a Radiação/genética , Tolerância a Radiação/efeitos da radiação , Sarcoma/genética , Sarcoma/patologia , Resultado do Tratamento , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/efeitos da radiação
13.
J Clin Invest ; 125(1): 194-207, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25437876

RESUMO

Activation of CD4+ T cells results in rapid proliferation and differentiation into effector and regulatory subsets. CD4+ effector T cell (Teff) (Th1 and Th17) and Treg subsets are metabolically distinct, yet the specific metabolic differences that modify T cell populations are uncertain. Here, we evaluated CD4+ T cell populations in murine models and determined that inflammatory Teffs maintain high expression of glycolytic genes and rely on high glycolytic rates, while Tregs are oxidative and require mitochondrial electron transport to proliferate, differentiate, and survive. Metabolic profiling revealed that pyruvate dehydrogenase (PDH) is a key bifurcation point between T cell glycolytic and oxidative metabolism. PDH function is inhibited by PDH kinases (PDHKs). PDHK1 was expressed in Th17 cells, but not Th1 cells, and at low levels in Tregs, and inhibition or knockdown of PDHK1 selectively suppressed Th17 cells and increased Tregs. This alteration in the CD4+ T cell populations was mediated in part through ROS, as N-acetyl cysteine (NAC) treatment restored Th17 cell generation. Moreover, inhibition of PDHK1 modulated immunity and protected animals against experimental autoimmune encephalomyelitis, decreasing Th17 cells and increasing Tregs. Together, these data show that CD4+ subsets utilize and require distinct metabolic programs that can be targeted to control specific T cell populations in autoimmune and inflammatory diseases.


Assuntos
Linfócitos T CD4-Positivos/enzimologia , Encefalomielite Autoimune Experimental/enzimologia , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Encefalomielite Autoimune Experimental/imunologia , Metabolismo Energético , Glicólise , Camundongos Endogâmicos C57BL , Piruvato Desidrogenase Quinase de Transferência de Acetil , Linfócitos T Reguladores/enzimologia , Células Th17/enzimologia , Transcriptoma
14.
Cell Metab ; 20(1): 61-72, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24930970

RESUMO

CD4 T cell activation leads to proliferation and differentiation into effector (Teff) or regulatory (Treg) cells that mediate or control immunity. While each subset prefers distinct glycolytic or oxidative metabolic programs in vitro, requirements and mechanisms that control T cell glucose uptake and metabolism in vivo are uncertain. Despite expression of multiple glucose transporters, Glut1 deficiency selectively impaired metabolism and function of thymocytes and Teff. Resting T cells were normal until activated, when Glut1 deficiency prevented increased glucose uptake and glycolysis, growth, proliferation, and decreased Teff survival and differentiation. Importantly, Glut1 deficiency decreased Teff expansion and the ability to induce inflammatory disease in vivo. Treg cells, in contrast, were enriched in vivo and appeared functionally unaffected and able to suppress Teff, irrespective of Glut1 expression. These data show a selective in vivo requirement for Glut1 in metabolic reprogramming of CD4 T cell activation and Teff expansion and survival.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Transportador de Glucose Tipo 1/metabolismo , Animais , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/transplante , Sobrevivência Celular , Colite/imunologia , Colite/metabolismo , Colite/patologia , Glucose/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 3/genética , Transportador de Glucose Tipo 3/metabolismo , Glicólise , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/metabolismo , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Transplante Homólogo
15.
J Immunol ; 192(8): 3626-36, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24616478

RESUMO

B cell activation leads to proliferation and Ab production that can protect from pathogens or promote autoimmunity. Regulation of cell metabolism is essential to support the demands of lymphocyte growth and effector function and may regulate tolerance. In this study, we tested the regulation and role of glucose uptake and metabolism in the proliferation and Ab production of control, anergic, and autoimmune-prone B cells. Control B cells had a balanced increase in lactate production and oxygen consumption following activation, with proportionally increased glucose transporter Glut1 expression and mitochondrial mass upon either LPS or BCR stimulation. This contrasted with metabolic reprogramming of T cells, which had lower glycolytic flux when resting but disproportionately increased this pathway upon activation. Importantly, tolerance greatly affected B cell metabolic reprogramming. Anergic B cells remained metabolically quiescent, with only a modest increase in glycolysis and oxygen consumption with LPS stimulation. B cells chronically stimulated with elevated BAFF, however, rapidly increased glycolysis and Ab production upon stimulation. Induction of glycolysis was critical for Ab production, as glycolytic inhibition with the pyruvate dehydrogenase kinase inhibitor dichloroacetate sharply suppressed B cell proliferation and Ab secretion in vitro and in vivo. Furthermore, B cell-specific deletion of Glut1 led to reduced B cell numbers and impaired Ab production in vivo. Together, these data show that activated B cells require Glut1-dependent metabolic reprogramming to support proliferation and Ab production that is distinct from T cells and that this glycolytic reprogramming is regulated in tolerance.


Assuntos
Formação de Anticorpos , Fator Ativador de Células B/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Anergia Clonal/imunologia , Animais , Fator Ativador de Células B/genética , Ácido Dicloroacético/farmacologia , Glucose/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Glicólise/efeitos dos fármacos , Homeostase , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ativação Linfocitária/imunologia , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Linfócitos T/imunologia , Linfócitos T/metabolismo
16.
Proc Natl Acad Sci U S A ; 108(45): 18348-53, 2011 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-22042850

RESUMO

Stimulation of resting CD4(+) T lymphocytes leads to rapid proliferation and differentiation into effector (Teff) or inducible regulatory (Treg) subsets with specific functions to promote or suppress immunity. Importantly, Teff and Treg use distinct metabolic programs to support subset specification, survival, and function. Here, we describe that the orphan nuclear receptor estrogen-related receptor-α (ERRα) regulates metabolic pathways critical for Teff. Resting CD4(+) T cells expressed low levels of ERRα protein that increased on activation. ERRα deficiency reduced activated T-cell numbers in vivo and cytokine production in vitro but did not seem to modulate immunity through inhibition of activating signals or viability. Rather, ERRα broadly affected metabolic gene expression and glucose metabolism essential for Teff. In particular, up-regulation of Glut1 protein, glucose uptake, and mitochondrial processes were suppressed in activated ERRα(-/-) T cells and T cells treated with two chemically independent ERRα inhibitors or by shRNAi. Acute ERRα inhibition also blocked T-cell growth and proliferation. This defect appeared as a result of inadequate glucose metabolism, because provision of lipids, but not increased glucose uptake or pyruvate, rescued ATP levels and cell division. Additionally, we have shown that Treg requires lipid oxidation, whereas Teff uses glucose metabolism, and lipid addition selectively restored Treg--but not Teff--generation after acute ERRα inhibition. Furthermore, in vivo inhibition of ERRα reduced T-cell proliferation and Teff generation in both immunization and experimental autoimmune encephalomyelitis models. Thus, ERRα is a selective transcriptional regulator of Teff metabolism that may provide a metabolic means to modulate immunity.


Assuntos
Diferenciação Celular , Ativação Linfocitária , Receptores de Estrogênio/fisiologia , Linfócitos T/imunologia , Animais , Proliferação de Células , Glucose/metabolismo , Homeostase , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Reação em Cadeia da Polimerase , Interferência de RNA , Receptores de Estrogênio/genética , Receptor ERRalfa Relacionado ao Estrogênio
17.
Cancer Res ; 71(15): 5204-13, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21670080

RESUMO

Most cancer cells utilize aerobic glycolysis, and activation of the phosphoinositide 3-kinase/Akt/mTOR pathway can promote this metabolic program to render cells glucose dependent. Although manipulation of glucose metabolism may provide a means to specifically eliminate cancer cells, mechanistic links between cell metabolism and apoptosis remain poorly understood. Here, we examined the role and metabolic regulation of the antiapoptotic Bcl-2 family protein Mcl-1 in cell death upon inhibition of Akt-induced aerobic glycolysis. In the presence of adequate glucose, activated Akt prevented the loss of Mcl-1 expression and protected cells from growth factor deprivation-induced apoptosis. Mcl-1 associated with and inhibited the proapoptotic Bcl-2 family protein Bim, contributing to cell survival. However, suppression of glucose metabolism led to induction of Bim, decreased expression of Mcl-1, and apoptosis. The proapoptotic Bcl-2/Bcl-xL/Bcl-w inhibitor, ABT-737, shows clinical promise, but Mcl-1 upregulation can promote resistance. Importantly, inhibition of glucose metabolism or mTORC1 overcame Mcl-1-mediated resistance in diffuse large B cell leukemic cells. Together these data show that Mcl-1 protein synthesis is tightly controlled by metabolism and that manipulation of glucose metabolism may provide a mechanism to suppress Mcl-1 expression and sensitize cancer cells to apoptosis.


Assuntos
Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Glucose/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Neoplasias/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 11 Semelhante a Bcl-2 , Compostos de Bifenilo/farmacologia , Proteínas de Ciclo Celular , Linhagem Celular Tumoral/efeitos dos fármacos , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Humanos , Células Jurkat/efeitos dos fármacos , Linfoma Difuso de Grandes Células B/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas de Membrana/metabolismo , Camundongos , Complexos Multiproteicos , Proteína de Sequência 1 de Leucemia de Células Mieloides , Nitrofenóis/farmacologia , Fosfoproteínas/fisiologia , Piperazinas/farmacologia , Proteínas/antagonistas & inibidores , Proteínas/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Proteínas Quinases S6 Ribossômicas/fisiologia , Sulfonamidas/farmacologia , Linfócitos T/efeitos dos fármacos , Serina-Treonina Quinases TOR
18.
J Immunol ; 186(6): 3299-303, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21317389

RESUMO

Stimulated CD4(+) T lymphocytes can differentiate into effector T cell (Teff) or inducible regulatory T cell (Treg) subsets with specific immunological roles. We show that Teff and Treg require distinct metabolic programs to support these functions. Th1, Th2, and Th17 cells expressed high surface levels of the glucose transporter Glut1 and were highly glycolytic. Treg, in contrast, expressed low levels of Glut1 and had high lipid oxidation rates. Consistent with glycolysis and lipid oxidation promoting Teff and Treg, respectively, Teff were selectively increased in Glut1 transgenic mice and reliant on glucose metabolism, whereas Treg had activated AMP-activated protein kinase and were dependent on lipid oxidation. Importantly, AMP-activated protein kinase stimulation was sufficient to decrease Glut1 and increase Treg generation in an asthma model. These data demonstrate that CD4(+) T cell subsets require distinct metabolic programs that can be manipulated in vivo to control Treg and Teff development in inflammatory diseases.


Assuntos
Glicólise/imunologia , Peroxidação de Lipídeos/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Asma/imunologia , Asma/metabolismo , Asma/patologia , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Células Cultivadas , Modelos Animais de Doenças , Transportador de Glucose Tipo 1/antagonistas & inibidores , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Imunofenotipagem , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Subpopulações de Linfócitos T/citologia , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Reguladores/enzimologia , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA