Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 755, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765047

RESUMO

Bile salt hydrolase (BSH) in Bacteroides is considered a potential drug target for obesity-related metabolic diseases, but its involvement in colon tumorigenesis has not been explored. BSH-expressing Bacteroides is found at high abundance in the stools of colorectal cancer (CRC) patients  with overweight and in the feces of a high-fat diet (HFD)-induced CRC mouse model. Colonization of B. fragilis 638R, a strain with low BSH activity, overexpressing a recombinant bsh gene from B. fragilis NCTC9343 strain, results in increased unconjugated bile acids in the colon and accelerated progression of CRC under HFD treatment. In the presence of high BSH activity, the resultant elevation of unconjugated deoxycholic acid and lithocholic acid activates the G-protein-coupled bile acid receptor, resulting in increased ß-catenin-regulated chemokine (C-C motif) ligand 28 (CCL28) expression in colon tumors. Activation of the ß-catenin/CCL28 axis leads to elevated intra-tumoral immunosuppressive CD25+FOXP3+ Treg cells. Blockade of the ß-catenin/CCL28 axis releases the immunosuppression to enhance the intra-tumoral anti-tumor response, which decreases CRC progression under HFD treatment. Pharmacological inhibition of BSH reduces HFD-accelerated CRC progression, coincident with suppression of the ß-catenin/CCL28 pathway. These findings provide insights into the pro-carcinogenetic role of Bacteroides in obesity-related CRC progression and characterize BSH as a potential target for CRC prevention and treatment.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Animais , Camundongos , Bacteroides/genética , Bacteroides/metabolismo , beta Catenina/metabolismo , Amidoidrolases/genética , Carcinogênese , Obesidade/complicações , Ácidos e Sais Biliares , Neoplasias Colorretais/patologia
2.
Toxicology ; 458: 152831, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34097992

RESUMO

Aryl hydrocarbon receptor (AHR) activation via 2,3,7,8-tetrachlorodibenzofuran (TCDF) induces the accumulation of hepatic lipids. Here we report that AHR activation by TCDF (24  µg/kg body weight given orally for five days) induced significant elevation of hepatic lipids including ceramides in mice, was associated with increased expression of key ceramide biosynthetic genes, and increased activity of their respective enzymes. Results from chromatin immunoprecipitation (ChIP), electrophoretic mobility shift assay (EMSA) and cell-based reporter luciferase assays indicated that AHR directly activated the serine palmitoyltransferase long chain base subunit 2 (Sptlc2, encodes serine palmitoyltransferase 2 (SPT2)) gene whose product catalyzes the initial rate-limiting step in de novo sphingolipid biosynthesis. Hepatic ceramide accumulation was further confirmed by mass spectrometry-based lipidomics. Taken together, our results revealed that AHR activation results in the up-regulation of Sptlc2, leading to ceramide accumulation, thus promoting lipogenesis, which can induce hepatic lipid accumulation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ceramidas/biossíntese , Lipogênese/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Ativação Metabólica/efeitos dos fármacos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Benzofuranos/farmacologia , Ceramidas/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Lipidômica , Fígado/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Hidrocarboneto Arílico/genética , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Triglicerídeos/metabolismo
3.
Hum Genet ; 140(5): 747-760, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33221945

RESUMO

Despite the growing knowledge surrounding host-microbiome interactions, we are just beginning to understand how the gut microbiome influences-and is influenced by-host gene expression. Here, we review recent literature that intersects these two fields, summarizing themes across studies. Work in model organisms, human biopsies, and cell culture demonstrate that the gut microbiome is an important regulator of several host pathways relevant for disease, including immune development and energy metabolism, and vice versa. The gut microbiome remodels host chromatin, causes differential splicing, alters the epigenetic landscape, and directly interrupts host signaling cascades. Emerging techniques like single-cell RNA sequencing and organoid generation have the potential to refine our understanding of the relationship between the gut microbiome and host gene expression in the future. By intersecting microbiome and host gene expression, we gain a window into the physiological processes important for fostering the extensive cross-kingdom interactions and ultimately our health.


Assuntos
Microbioma Gastrointestinal/fisiologia , Regulação da Expressão Gênica/genética , Expressão Gênica/genética , Metabolismo Energético/genética , Humanos , RNA Ribossômico 16S/genética
4.
Gut Microbes ; 12(1): 1-16, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33295235

RESUMO

Emerging evidence supports that exposure to persistent organic pollutants (POPs) can impact the interaction between the gut microbiota and host. Recent efforts have characterized the relationship between gut microbiota and environment pollutants suggesting additional research is needed to understand potential new avenues for toxicity. Here, we systematically examined the direct effects of POPs including 2,3,7,8-tetrachlorodibenzofuran (TCDF), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and polychlorinated biphenyls (PCB-123 and PCB-156) on the microbiota using metatranscriptomics and NMR- and mass spectrometry-based metabolomics combined with flow cytometry and growth rate measurements (OD600). This study demonstrated that (1) POPs directly and rapidly affect isolated cecal bacterial global metabolism that is associated with significant decreases in microbial metabolic activity; (2) significant changes in cecal bacterial gene expression related to tricarboxylic acid (TCA) cycle as well as carbon metabolism, carbon fixation, pyruvate metabolism, and protein export were observed following most POP exposure; (3) six individual bacterial species show variation in lipid metabolism in response to POP exposure; and (4) PCB-153 (non-coplanar)has a greater impact on bacteria than PCB-126 (coplanar) at the metabolic and transcriptional levels. These data provide new insights into the direct role of POPs on gut microbiota and begins to establish possible microbial toxicity endpoints which may help to inform risk assessment.


Assuntos
Bactérias/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Poluentes Orgânicos Persistentes/toxicidade , Bifenilos Policlorados/toxicidade , Dibenzodioxinas Policloradas/toxicidade , Animais , Benzofuranos/toxicidade , Carbono/metabolismo , Ceco/efeitos dos fármacos , Ceco/microbiologia , Ciclo do Ácido Cítrico/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transporte Proteico/efeitos dos fármacos , Ácido Pirúvico/metabolismo
5.
Gut Microbes ; 11(4): 979-996, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138583

RESUMO

Bile acids are potent antibacterial compounds and play an important role in shaping the microbial ecology of the gut. Here, we combined flow cytometry, growth rate measurements (OD600), and NMR- and mass spectrometry-based metabolomics to systematically profile the impact of bile acids on the microbiome using in vitro and in vivo models. This study confirmed that (1) unconjugated bile acids possess more potent antibacterial activity than conjugated bile acids; (2) Gram-positive bacteria are more sensitive to bile acids than Gram-negative bacteria; (3) some probiotic bacteria such as Lactobacillus and Bifidobacterium and 7α-dehydroxylating bacteria such as Clostridium scindens show bile acid resistance that is associated with activation of glycolysis. Moreover, we demonstrated that (4) as one of most hydrophobic bile acids, lithocholic acid (LCA) shows reduced toxicity to bacteria in the cecal microbiome in both in vivo and in vitro models; (5) bile acids directly and rapidly affect bacterial global metabolism including membrane damage, disrupted amino acid, nucleotide, and carbohydrate metabolism; and (6) in vivo, short-term exposure to bile acids significantly affected host metabolism via alterations of the bacterial community structure. This study systematically profiled interactions between bile acids and gut bacteria providing validation of previous observation and new insights into the interaction of bile acids with the microbiome and mechanisms related to bile acid tolerance.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Ácidos e Sais Biliares/metabolismo , Ácidos e Sais Biliares/farmacologia , Ceco/microbiologia , Microbioma Gastrointestinal , Animais , Bactérias/efeitos dos fármacos , Ácidos e Sais Biliares/administração & dosagem , Glicólise , Masculino , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Probióticos
6.
Toxicology ; 431: 152365, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31926186

RESUMO

Perfluorooctane sulfonate (PFOS) is a persistent environmental chemical whose biological effects are mediated by multiple mechanisms. Recent evidence suggests that the gut microbiome may be directly impacted by and/or alter the fate and effects of environmental chemicals in the host. Thus, the aim of this study was to determine whether PFOS influences the gut microbiome and its metabolism, and the host metabolome. Four groups of male C57BL/6 J mice were fed a diet with or without 0.003 %, 0.006 %, or 0.012 % PFOS, respectively. 16S rRNA gene sequencing, metabolomic, and molecular analyses were used to examine the gut microbiota of mice after dietary PFOS exposure. Dietary PFOS exposure caused a marked change in the gut microbiome compared to controls. Dietary PFOS also caused dose-dependent changes in hepatic metabolic pathways including those involved in lipid metabolism, oxidative stress, inflammation, TCA cycle, glucose, and amino acid metabolism. Changes in the metabolome correlated with changes in genes that regulate these pathways. Integrative analyses also demonstrated a strong correlation between the alterations in microbiota composition and host metabolic profiles induced by PFOS. Further, using isolated mouse cecal contents, PFOS exposure directly affected the gut microbiota metabolism. Results from these studies demonstrate that the molecular and biochemical changes induced by PFOS are mediated in part by the gut microbiome, which alters gene expression and the host metabolome in mice.


Assuntos
Ácidos Alcanossulfônicos/toxicidade , Fluorocarbonos/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Ceco/efeitos dos fármacos , Ceco/metabolismo , Ceco/microbiologia , Dieta , Relação Dose-Resposta a Droga , Homeostase/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Metaboloma , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S/biossíntese , RNA Ribossômico 16S/genética
7.
Metabolites ; 10(1)2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31861317

RESUMO

Persistent organic pollutants (POPs) are important environmental chemicals and continued study of their mechanism of action remains a high priority. POPs, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 2,3,7,8-tetrachlorodibenzofuran (TCDF), and polychlorinated biphenyls (PCBs), are widespread environmental contaminants that are agonists for the aryl hydrocarbon receptor (AHR). Activation of the AHR modulates the gut microbiome community structure and function, host immunity, and the host metabolome. In the current study, male C57BL6/J mice were exposed, via the diet, to 5 µg/kg body weight (BW) TCDF or 24 µg/kg BW of TCDF every day for 5 days. The functional and structural changes imparted by TCDF exposure to the gut microbiome and host metabolome were explored via 16S rRNA gene amplicon sequencing, metabolomics, and bacterial metatranscriptomics. Significant changes included increases in lipopolysaccharide (LPS) biosynthesis gene expression after exposure to 24 µg/kg BW of TCDF. Increases in LPS biosynthesis were confirmed with metabolomics and LPS assays using serum obtained from TCDF-treated mice. Significant increases in gene expression within aspartate and glutamate metabolism were noted after exposure to 24 µg/kg BW of TCDF. Together, these results suggest that after exposure to 24 µg/kg BW of TCDF, the gut microbiome increases the production of LPS and glutamate to promote localized gut inflammation, potentially using glutamate as a stress response.

8.
Front Immunol ; 10: 1772, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31417552

RESUMO

The active form of vitamin D (1,25(OH)2D) suppresses experimental models of inflammatory bowel disease in part by regulating the microbiota. In this study, the role of vitamin D in the regulation of microbe induced RORγt/FoxP3+ T regulatory (reg) cells in the colon was determined. Vitamin D sufficient (D+) mice had significantly higher frequencies of FoxP3+ and RORγt/FoxP3+ T reg cells in the colon compared to vitamin D deficient (D-) mice. The higher frequency of RORγt/FoxP3+ T reg cells in D+ colon correlated with higher numbers of bacteria from the Clostridium XIVa and Bacteroides in D+ compared to D- cecum. D- mice with fewer RORγt/FoxP3+ T reg cells were significantly more susceptible to colitis than D+ mice. Transfer of the cecal bacteria from D+ or D- mice to germfree recipients phenocopied the higher numbers of RORγt/FoxP3+ cells and reduced susceptibility to colitis in D+ vs. D- recipient mice. 1,25(OH)2D treatment of the D- mice beginning at 3 weeks of age did not completely recover RORγt/FoxP3+ T reg cells or the Bacteriodes, Bacteriodes thetaiotaomicron, and Clostridium XIVa numbers to D+ values. Early vitamin D status shapes the microbiota to optimize the population of colonic RORγt/FoxP3+ T reg cells important for resistance to colitis.


Assuntos
Calcitriol/farmacologia , Colite , Colo , Microbioma Gastrointestinal , Linfócitos T Reguladores/imunologia , Animais , Bacteroidetes/imunologia , Clostridium/imunologia , Colite/imunologia , Colite/microbiologia , Colite/patologia , Colo/imunologia , Colo/microbiologia , Colo/patologia , Fatores de Transcrição Forkhead/imunologia , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/imunologia , Camundongos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Linfócitos T Reguladores/patologia
9.
Hum Genomics ; 13(1): 27, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186074

RESUMO

The human microbiome is composed of four major areas including intestinal, skin, vaginal, and oral microbiomes, with each area containing unique species and unique functionalities. The human microbiome may be modulated with prebiotics, probiotics, and postbiotics to potentially aid in the treatment of diseases like irritable bowel syndrome, bacterial vaginosis, atopic dermatitis, gingivitis, obesity, or cancer. There is also potential for many of the inhabitants of the human microbiome to directly modulate host gene expression and modulate host detoxifying enzyme activity like cytochrome P450s (CYPs), dehydrogenases, and carboxylesterases. Therefore, the microbiome may be important to consider during drug discovery, risk assessment, and dosing regimens for various diseases given that the human microbiome has been shown to impact host detoxification processes.


Assuntos
Inativação Metabólica/genética , Microbiota/efeitos dos fármacos , Prebióticos , Probióticos/uso terapêutico , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/genética , Feminino , Gengivite/tratamento farmacológico , Gengivite/genética , Humanos , Síndrome do Intestino Irritável/tratamento farmacológico , Síndrome do Intestino Irritável/genética , Microbiota/genética , Vaginose Bacteriana/tratamento farmacológico , Vaginose Bacteriana/genética
10.
Metabolites ; 9(6)2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31226775

RESUMO

A hydrophilic interaction liquid chromatography (HILIC)-ultra high-pressure liquid chromatography (UHPLC) coupled with tandem mass spectrometry (MS/MS) method was developed and applied to profile metabolite changes in human Huh-7 cells exposed to the potent aryl hydrocarbon receptor (AHR) ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Comparisons of sensitivity (limit of detection as low as 0.01 µM) and reproducibility (84% of compounds had an interday relative standard deviation (RSD) less than 10.0%; 83% of compounds had an intraday RSD less than 15.0%) were assessed for all the metabolites. The exposure of Huh-7 cells to the hepatotoxic carcinogen TCDD at low doses (1 nM and 10 nM for 4 h and 24 h, respectively) was reflected by the disturbance of amino acid metabolism, energy metabolism (glycolysis, TCA cycle), and nucleic acid metabolism. TCDD caused a significant decrease in amino acids such as serine, alanine, and proline while promoting an increase in arginine levels with 24 h treatment. Energy metabolism intermediates such as phosphoenolpyruvate and acetyl-CoA and nucleosides such as UMP, XMP, and CMP were also markedly decreased. These results support the application of HILIC-UHPLC-MS/MS for robust and reliable analysis of the cellular response to environmentally relevant toxicants at lower doses.

11.
Drug Metab Dispos ; 47(2): 86-93, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30409838

RESUMO

Intestinal bacteria play an important role in bile acid metabolism and in the regulation of multiple host metabolic pathways (e.g., lipid and glucose homeostasis) through modulation of intestinal farnesoid X receptor (FXR) activity. Here, we examined the effect of berberine (BBR), a natural plant alkaloid, on intestinal bacteria using in vitro and in vivo models. In vivo, the metabolomic response and changes in mouse intestinal bacterial communities treated with BBR (100 mg/kg) for 5 days were assessed using NMR- and mass spectrometry-based metabolomics coupled with multivariate data analysis. Short-term BBR exposure altered intestinal bacteria by reducing Clostridium cluster XIVa and IV and their bile salt hydrolase (BSH) activity, which resulted in the accumulation of taurocholic acid (TCA). The accumulation of TCA was associated with activation of intestinal FXR, which can mediate bile acid, lipid, and glucose metabolism. In vitro, isolated mouse cecal bacteria were incubated with three doses of BBR (0.1, 1, and 10 mg/ml) for 4 hours in an anaerobic chamber. NMR-based metabolomics combined with flow cytometry was used to evaluate the direct physiologic and metabolic effect of BBR on the bacteria. In vitro, BBR exposure not only altered bacterial physiology but also changed bacterial community composition and function, especially reducing BSH-expressing bacteria like Clostridium spp. These data suggest that BBR directly affects bacteria to alter bile acid metabolism and activate FXR signaling. These data provide new insights into the link between intestinal bacteria, nuclear receptor signaling, and xenobiotics.


Assuntos
Berberina/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/metabolismo , Amidoidrolases/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Ceco/efeitos dos fármacos , Ceco/metabolismo , Ceco/microbiologia , Clostridium/efeitos dos fármacos , Clostridium/isolamento & purificação , Clostridium/fisiologia , Microbioma Gastrointestinal/fisiologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Masculino , Metabolômica/métodos , Camundongos , Camundongos Endogâmicos C57BL , Ácido Taurocólico/metabolismo
12.
Nat Med ; 24(12): 1919-1929, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30397356

RESUMO

The anti-hyperglycemic effect of metformin is believed to be caused by its direct action on signaling processes in hepatocytes, leading to lower hepatic gluconeogenesis. Recently, metformin was reported to alter the gut microbiota community in humans, suggesting that the hyperglycemia-lowering action of the drug could be the result of modulating the population of gut microbiota. However, the critical microbial signaling metabolites and the host targets associated with the metabolic benefits of metformin remained elusive. Here, we performed metagenomic and metabolomic analysis of samples from individuals with newly diagnosed type 2 diabetes (T2D) naively treated with metformin for 3 d, which revealed that Bacteroides fragilis was decreased and the bile acid glycoursodeoxycholic acid (GUDCA) was increased in the gut. These changes were accompanied by inhibition of intestinal farnesoid X receptor (FXR) signaling. We further found that high-fat-diet (HFD)-fed mice colonized with B. fragilis were predisposed to more severe glucose intolerance, and the metabolic benefits of metformin treatment on glucose intolerance were abrogated. GUDCA was further identified as an intestinal FXR antagonist that improved various metabolic endpoints in mice with established obesity. Thus, we conclude that metformin acts in part through a B. fragilis-GUDCA-intestinal FXR axis to improve metabolic dysfunction, including hyperglycemia.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Metformina/administração & dosagem , Obesidade/tratamento farmacológico , Receptores Citoplasmáticos e Nucleares/genética , Bacteroides/efeitos dos fármacos , Bacteroides/patogenicidade , Ácidos e Sais Biliares/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/microbiologia , Diabetes Mellitus Tipo 2/patologia , Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Intolerância à Glucose/tratamento farmacológico , Intolerância à Glucose/genética , Intolerância à Glucose/microbiologia , Humanos , Hiperglicemia/tratamento farmacológico , Hiperglicemia/genética , Hiperglicemia/microbiologia , Hiperglicemia/patologia , Metaboloma/efeitos dos fármacos , Metaboloma/genética , Metagenômica/métodos , Obesidade/genética , Obesidade/microbiologia , Obesidade/patologia , Ácido Ursodesoxicólico/análogos & derivados
13.
mSystems ; 3(6)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30417115

RESUMO

The gut microbiota is susceptible to modulation by environmental stimuli and therefore can serve as a biological sensor. Recent evidence suggests that xenobiotics can disrupt the interaction between the microbiota and host. Here, we describe an approach that combines in vitro microbial incubation (isolated cecal contents from mice), flow cytometry, and mass spectrometry- and 1H nuclear magnetic resonance (NMR)-based metabolomics to evaluate xenobiotic-induced microbial toxicity. Tempol, a stabilized free radical scavenger known to remodel the microbial community structure and function in vivo, was studied to assess its direct effect on the gut microbiota. The microbiota was isolated from mouse cecum and was exposed to tempol for 4 h under strict anaerobic conditions. The flow cytometry data suggested that short-term tempol exposure to the microbiota is associated with disrupted membrane physiology as well as compromised metabolic activity. Mass spectrometry and NMR metabolomics revealed that tempol exposure significantly disrupted microbial metabolic activity, specifically indicated by changes in short-chain fatty acids, branched-chain amino acids, amino acids, nucleotides, glucose, and oligosaccharides. In addition, a mouse study with tempol (5 days gavage) showed similar microbial physiologic and metabolic changes, indicating that the in vitro approach reflected in vivo conditions. Our results, through evaluation of microbial viability, physiology, and metabolism and a comparison of in vitro and in vivo exposures with tempol, suggest that physiologic and metabolic phenotyping can provide unique insight into gut microbiota toxicity. IMPORTANCE The gut microbiota is modulated physiologically, compositionally, and metabolically by xenobiotics, potentially causing metabolic consequences to the host. We recently reported that tempol, a stabilized free radical nitroxide, can exert beneficial effects on the host through modulation of the microbiome community structure and function. Here, we investigated a multiplatform phenotyping approach that combines high-throughput global metabolomics with flow cytometry to evaluate the direct effect of tempol on the microbiota. This approach may be useful in deciphering how other xenobiotics directly influence the microbiota.

14.
Curr Protoc Toxicol ; 78(1): e54, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30230220

RESUMO

Characterizing the reciprocal interactions between toxicants, the gut microbiota, and the host, holds great promise for improving our mechanistic understanding of toxic endpoints. Advances in culture-independent sequencing analysis (e.g., 16S rRNA gene amplicon sequencing) combined with quantitative metabolite profiling (i.e., metabolomics) have provided new ways of studying the gut microbiome and have begun to illuminate how toxicants influence the structure and function of the gut microbiome. Developing a standardized protocol is important for establishing robust, reproducible, and importantly, comparative data. This protocol can be used as a foundation for examining the gut microbiome via sequencing-based analysis and metabolomics. Two main units follow: (1) analysis of the gut microbiome via sequencing-based approaches; and (2) functional analysis of the gut microbiome via metabolomics. © 2018 by John Wiley & Sons, Inc.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/efeitos dos fármacos , Substâncias Perigosas/toxicidade , Metaboloma/efeitos dos fármacos , Metabolômica/métodos , Toxicologia/métodos , DNA Bacteriano/genética , Microbioma Gastrointestinal/genética , Trato Gastrointestinal/microbiologia , Humanos , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
15.
Hepatology ; 68(4): 1574-1588, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29486523

RESUMO

Bile acids activate farnesoid X receptor (FXR) and G protein-coupled bile acid receptor-1 (aka Takeda G protein-coupled receptor-5 [TGR5]) to regulate bile acid metabolism and glucose and insulin sensitivity. FXR and TGR5 are coexpressed in the enteroendocrine L cells, but their roles in integrated regulation of metabolism are not completely understood. We reported recently that activation of FXR induces TGR5 to stimulate glucagon-like peptide-1 (GLP-1) secretion to improve insulin sensitivity and hepatic metabolism. In this study, we used the intestine-restricted FXR agonist fexaramine (FEX) to study the effect of activation of intestinal FXR on the gut microbiome, bile acid metabolism, and FXR and TGR5 signaling. The current study revealed that FEX markedly increased taurolithocholic acid, increased secretion of fibroblast growth factors 15 and 21 and GLP-1, improved insulin and glucose tolerance, and promoted white adipose tissue browning in mice. Analysis of 16S ribosomal RNA sequences of the gut microbiome identified the FEX-induced and lithocholic acid-producing bacteria Acetatifactor and Bacteroides. Antibiotic treatment completely reversed the FEX-induced metabolic phenotypes and inhibited taurolithocholic acid synthesis, adipose tissue browning, and liver bile acid synthesis gene expression but further increased intestinal FXR target gene expression. FEX treatment effectively improved lipid profiles, increased GLP-1 secretion, improved glucose and insulin tolerance, and promoted adipose tissue browning, while antibiotic treatment reversed the beneficial metabolic effects of FEX in obese and diabetic mice. CONCLUSION: This study uncovered a mechanism in which activation of intestinal FXR shaped the gut microbiota to activate TGR5/GLP-1 signaling to improve hepatic glucose and insulin sensitivity and increase adipose tissue browning; the gut microbiota plays a critical role in bile acid metabolism and signaling to regulate metabolic homeostasis in health and disease. (Hepatology 2018).


Assuntos
Ácidos e Sais Biliares/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Acoplados a Proteínas G/metabolismo , Animais , Modelos Animais de Doenças , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Receptores Citoplasmáticos e Nucleares/farmacologia , Sensibilidade e Especificidade , Transdução de Sinais
16.
J Nutr Biochem ; 54: 28-34, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29227833

RESUMO

Vitamin A deficiency (A-) is a worldwide public health problem. To better understand how vitamin A status influences gut microbiota and host metabolism, we systematically analyzed urine, cecum, serum and liver samples from vitamin A sufficient (A+) and deficient (A-) mice using 1H NMR-based metabolomics, quantitative (q)PCR and 16S rRNA gene sequencing coupled with multivariate data analysis. The microbiota in the cecum of A- mice showed compositional as well as functional shifts compared to the microbiota from A+ mice. Targeted 1H NMR analyses revealed significant changes in microbial metabolite concentrations including higher butyrate and hippurate and decreased acetate and 4-hydroxyphenylacetate in A+ relative to A- mice. Bacterial butyrate-producing genes including butyryl-CoA:acetate CoA-transferase and butyrate kinase were significantly higher in bacteria from A+ versus bacteria from A- mice. A- mice had disturbances in multiple metabolic pathways including alterations in energy (hyperglycemia, glycogenesis, TCA cycle and lipoprotein biosynthesis), amino acid and nucleic acid metabolism. A- mice had hyperglycemia, liver dysfunction, changes in bacterial metabolism and altered gut microbial communities. Moreover, integrative analyses indicated a strong correlation between gut microbiota and host energy metabolism pathways in the liver. Vitamin A regulates host and bacterial metabolism, and the result includes alterations in energy homeostasis.


Assuntos
Metabolismo Energético/fisiologia , Microbioma Gastrointestinal/fisiologia , Deficiência de Vitamina A/microbiologia , Animais , Peso Corporal , Feminino , Teste de Tolerância a Glucose , Espectroscopia de Ressonância Magnética , Masculino , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S , Deficiência de Vitamina A/metabolismo
17.
J Funct Foods ; 37: 685-698, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29242716

RESUMO

Consumption of broccoli mediates numerous chemo-protective benefits through the intake of phytochemicals, some of which modulate aryl hydrocarbon receptor (AHR) activity. Whether AHR activation is a critical aspect of the therapeutic potential of dietary broccoli is not known. Here we administered isocaloric diets, with or without supplementation of whole broccoli (15% w/w), to congenic mice expressing the high-affinity Ahrb/b or low-affinity Ahrd/d alleles, for 24 days and examined the effects on AHR activity, intestinal microbial community structure, inflammatory status, and response to chemically induced colitis. Cecal microbial community structure and metabolic potential were segregated according to host dietary and AHR status. Dietary broccoli associated with heightened intestinal AHR activity, decreased microbial abundance of the family Erysipelotrichaceae, and attenuation of colitis. In summary, broccoli consumption elicited an enhanced response in ligand-sensitive Ahrb/b mice, demonstrating that in part the beneficial aspects of dietary broccoli upon intestinal health are associated with heightened AHR activity.

19.
Cell Metab ; 26(4): 672-685.e4, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28918936

RESUMO

While activation of beige thermogenesis is a promising approach for treatment of obesity-associated diseases, there are currently no known pharmacological means of inducing beiging in humans. Intermittent fasting is an effective and natural strategy for weight control, but the mechanism for its efficacy is poorly understood. Here, we show that an every-other-day fasting (EODF) regimen selectively stimulates beige fat development within white adipose tissue and dramatically ameliorates obesity, insulin resistance, and hepatic steatosis. EODF treatment results in a shift in the gut microbiota composition leading to elevation of the fermentation products acetate and lactate and to the selective upregulation of monocarboxylate transporter 1 expression in beige cells. Microbiota-depleted mice are resistance to EODF-induced beiging, while transplantation of the microbiota from EODF-treated mice to microbiota-depleted mice activates beiging and improves metabolic homeostasis. These findings provide a new gut-microbiota-driven mechanism for activating adipose tissue browning and treating metabolic diseases.


Assuntos
Tecido Adiposo Bege/metabolismo , Tecido Adiposo Branco/metabolismo , Jejum , Microbioma Gastrointestinal , Obesidade/terapia , Animais , Metabolismo Energético , Fígado Gorduroso/complicações , Fígado Gorduroso/metabolismo , Fígado Gorduroso/microbiologia , Fígado Gorduroso/terapia , Fatores de Crescimento de Fibroblastos/metabolismo , Resistência à Insulina , Síndrome Metabólica/complicações , Síndrome Metabólica/metabolismo , Síndrome Metabólica/microbiologia , Síndrome Metabólica/terapia , Camundongos Endogâmicos C57BL , Obesidade/complicações , Obesidade/metabolismo , Obesidade/microbiologia , Transdução de Sinais , Termogênese
20.
Curr Opin Toxicol ; 2: 30-35, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29527582

RESUMO

The aryl hydrocarbon receptor (AHR) is an important component of the host-microbiota communication network. Comparisons of wild-type and Ahr-null mice as well as from exposure studies with potent AHR ligands (e.g., 2,3,7,8-tetrachlorodibenzo-p-dioxin) have provided compelling evidence that the AHR may be a master regulator of the host-microbiota interaction thus helping to shape the immune system and impact host metabolism. Metabolomics and sequenced-based microbial community profiling, two recent technological advances, have helped to solidify this host-microbiota signaling concept and identified not only how specific ligands generated by the host and by the microbiota can activate the AHR, but also how activation/disruption of the AHR can influence and shape the microbiota. We are just beginning to understand how the temporal nature and tissue- and microbiota-specific generation of AHR ligands contribute to many AHR-dependent processes. In this review, we focus on several recent advances where metabolomics and characterization of the microbiota structure and function have generated new perspectives by which to evaluate AHR activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA