Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 16(736): eabq4581, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38416842

RESUMO

Fibrosis is a hallmark of chronic disease. Although fibroblasts are involved, it is unclear to what extent endothelial cells also might contribute. We detected increased expression of the transcription factor Sox9 in endothelial cells in several different mouse fibrosis models. These models included systolic heart failure induced by pressure overload, diastolic heart failure induced by high-fat diet and nitric oxide synthase inhibition, pulmonary fibrosis induced by bleomycin treatment, and liver fibrosis due to a choline-deficient diet. We also observed up-regulation of endothelial SOX9 in cardiac tissue from patients with heart failure. To test whether SOX9 induction was sufficient to cause disease, we generated mice with endothelial cell-specific overexpression of Sox9, which promoted fibrosis in multiple organs and resulted in signs of heart failure. Endothelial Sox9 deletion prevented fibrosis and organ dysfunction in the two mouse models of heart failure as well as in the lung and liver fibrosis mouse models. Bulk and single-cell RNA sequencing of mouse endothelial cells across multiple vascular beds revealed that SOX9 induced extracellular matrix, growth factor, and inflammatory gene expression, leading to matrix deposition by endothelial cells. Moreover, mouse endothelial cells activated neighboring fibroblasts that then migrated and deposited matrix in response to SOX9, a process partly mediated by the secreted growth factor CCN2, a direct SOX9 target; endothelial cell-specific Sox9 deletion reversed these changes. These findings suggest a role for endothelial SOX9 as a fibrosis-promoting factor in different mouse organs during disease and imply that endothelial cells are an important regulator of fibrosis.


Assuntos
Insuficiência Cardíaca , Fatores de Transcrição , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Células Endoteliais , Fibrose , Peptídeos e Proteínas de Sinalização Intercelular , Cirrose Hepática/complicações , Fatores de Transcrição SOX9/genética
2.
Cardiovasc Res ; 119(15): 2550-2562, 2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-37648651

RESUMO

AIMS: Cardiac fibrosis drives the progression of heart failure in ischaemic and hypertrophic cardiomyopathy. Therefore, the development of specific anti-fibrotic treatment regimens to counteract cardiac fibrosis is of high clinical relevance. Hence, this study examined the presence of persistent fibroblast activation during longstanding human heart disease at a single-cell resolution to identify putative therapeutic targets to counteract pathological cardiac fibrosis in patients. METHODS AND RESULTS: We used single-nuclei RNA sequencing with human tissues from two samples of one healthy donor, and five hypertrophic and two failing hearts. Unsupervised sub-clustering of 7110 nuclei led to the identification of 7 distinct fibroblast clusters. De-convolution of cardiac fibroblast heterogeneity revealed a distinct population of human cardiac fibroblasts with a molecular signature of persistent fibroblast activation and a transcriptional switch towards a pro-fibrotic extra-cellular matrix composition in patients with established cardiac hypertrophy and heart failure. This sub-cluster was characterized by high expression of POSTN, RUNX1, CILP, and a target gene adipocyte enhancer-binding protein 1 (AEBP1) (all P < 0.001). Strikingly, elevated circulating AEBP1 blood level were also detected in a validation cohort of patients with confirmed cardiac fibrosis and hypertrophic cardiomyopathy by cardiac magnetic resonance imaging (P < 0.01). Since endogenous AEBP1 expression was increased in patients with established cardiac hypertrophy and heart failure, we assessed the functional consequence of siRNA-mediated AEBP1 silencing in human cardiac fibroblasts. Indeed, AEBP1 silencing reduced proliferation, migration, and fibroblast contractile capacity and α-SMA gene expression, which is a hallmark of fibroblast activation (all P < 0.05). Mechanistically, the anti-fibrotic effects of AEBP1 silencing were linked to transforming growth factor-beta pathway modulation. CONCLUSION: Together, this study identifies persistent fibroblast activation in patients with longstanding heart disease, which might be detected by circulating AEBP1 and therapeutically modulated by its targeted silencing in human cardiac fibroblasts.


Assuntos
Cardiomiopatias , Cardiomiopatia Hipertrófica , Cardiopatias , Insuficiência Cardíaca , Humanos , Insuficiência Cardíaca/metabolismo , Cardiopatias/patologia , Cardiomegalia/metabolismo , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatias/metabolismo , Fibrose , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Carboxipeptidases/metabolismo , Proteínas Repressoras/metabolismo
3.
J Mol Cell Cardiol ; 178: 22-35, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36948385

RESUMO

AIMS: RASopathies are caused by mutations in genes that alter the MAP kinase pathway and are marked by several malformations with cardiovascular disorders as the predominant cause of mortality. Mechanistic insights in the underlying pathogenesis in affected cardiac tissue are rare. The aim of the study was to assess the impact of RASopathy causing mutations on the human heart. METHODS AND RESULTS: Using single cell approaches and histopathology we analyzed cardiac tissue from children with different RASopathy-associated mutations compared to age-matched dilated cardiomyopathy (DCM) and control hearts. The volume of cardiomyocytes was reduced in RASopathy conditions compared to controls and DCM patients, and the estimated number of cardiomyocytes per heart was ∼4-10 times higher. Single nuclei RNA sequencing of a 13-year-old RASopathy patient (carrying a PTPN11 c.1528C > G mutation) revealed that myocardial cell composition and transcriptional patterns were similar to <1 year old DCM hearts. Additionally, immaturity of cardiomyocytes is shown by an increased MYH6/MYH7 expression ratio and reduced expression of genes associated with fatty acid metabolism. In the patient with the PTPN11 mutation activation of the MAP kinase pathway was not evident in cardiomyocytes, whereas increased phosphorylation of PDK1 and its downstream kinase Akt was detected. CONCLUSION: In conclusion, an immature cardiomyocyte differentiation status appears to be preserved in juvenile RASopathy patients. The increased mass of the heart in such patients is due to an increase in cardiomyocyte number (hyperplasia) but not an enlargement of individual cardiomyocytes (hypertrophy).


Assuntos
Cardiomiopatia Dilatada , Miócitos Cardíacos , Criança , Lactente , Humanos , Adolescente , Miócitos Cardíacos/metabolismo , Hiperplasia/metabolismo , Mutação , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Hipertrofia/metabolismo , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo
4.
FEBS Lett ; 596(5): 638-654, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34787896

RESUMO

Cardiac fibroblasts constitute a major cell population in the heart. They secrete extracellular matrix components and various other factors shaping the microenvironment of the heart. In silico analysis of intercellular communication based on single-cell RNA sequencing revealed that fibroblasts are the source of the majority of outgoing signals to other cell types. This observation suggests that fibroblasts play key roles in orchestrating cellular interactions that maintain organ homeostasis but that can also contribute to disease states. Here, we will review the current knowledge of fibroblast interactions in the healthy, diseased, and aging heart. We focus on the interactions that fibroblasts establish with other cells of the heart, specifically cardiomyocytes, endothelial cells and immune cells, and particularly those relying on paracrine, electrical, and exosomal communication modes.


Assuntos
Células Endoteliais , Fibroblastos , Comunicação Celular , Fibroblastos/metabolismo , Miócitos Cardíacos/metabolismo
5.
Basic Res Cardiol ; 116(1): 42, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34224022

RESUMO

Coronavirus disease 2019 (COVID-19) spawned a global health crisis in late 2019 and is caused by the novel coronavirus SARS-CoV-2. SARS-CoV-2 infection can lead to elevated markers of endothelial dysfunction associated with higher risk of mortality. It is unclear whether endothelial dysfunction is caused by direct infection of endothelial cells or is mainly secondary to inflammation. Here, we investigate whether different types of endothelial cells are susceptible to SARS-CoV-2. Human endothelial cells from different vascular beds including umbilical vein endothelial cells, coronary artery endothelial cells (HCAEC), cardiac and lung microvascular endothelial cells, or pulmonary arterial cells were inoculated in vitro with SARS-CoV-2. Viral spike protein was only detected in HCAECs after SARS-CoV-2 infection but not in the other endothelial cells tested. Consistently, only HCAEC expressed the SARS-CoV-2 receptor angiotensin-converting enzyme 2 (ACE2), required for virus infection. Infection with the SARS-CoV-2 variants B.1.1.7, B.1.351, and P.2 resulted in significantly higher levels of viral spike protein. Despite this, no intracellular double-stranded viral RNA was detected and the supernatant did not contain infectious virus. Analysis of the cellular distribution of the spike protein revealed that it co-localized with endosomal calnexin. SARS-CoV-2 infection did induce the ER stress gene EDEM1, which is responsible for clearance of misfolded proteins from the ER. Whereas the wild type of SARS-CoV-2 did not induce cytotoxic or pro-inflammatory effects, the variant B.1.1.7 reduced the HCAEC cell number. Of the different tested endothelial cells, HCAECs showed highest viral uptake but did not promote virus replication. Effects on cell number were only observed after infection with the variant B.1.1.7, suggesting that endothelial protection may be particularly important in patients infected with this variant.


Assuntos
Retículo Endoplasmático/virologia , Células Endoteliais/virologia , SARS-CoV-2/patogenicidade , Enzima de Conversão de Angiotensina 2/metabolismo , Calnexina/metabolismo , Células Cultivadas , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Células Endoteliais/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Proteínas de Membrana/metabolismo , Receptores Virais/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo
6.
Circulation ; 143(17): 1704-1719, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33618539

RESUMO

BACKGROUND: Dilated cardiomyopathy (DCM) is a leading cause of death in children with heart failure. The outcome of pediatric heart failure treatment is inconsistent, and large cohort studies are lacking. Progress may be achieved through personalized therapy that takes age- and disease-related pathophysiology, pathology, and molecular fingerprints into account. We present single nuclei RNA sequencing from pediatric patients with DCM as the next step in identifying cellular signatures. METHODS: We performed single nuclei RNA sequencing with heart tissues from 6 children with DCM with an age of 0.5, 0.75, 5, 6, 12, and 13 years. Unsupervised clustering of 18 211 nuclei led to the identification of 14 distinct clusters with 6 major cell types. RESULTS: The number of nuclei in fibroblast clusters increased with age in patients with DCM, a finding that was confirmed by histological analysis and was consistent with an age-related increase in cardiac fibrosis quantified by cardiac magnetic resonance imaging. Fibroblasts of patients with DCM >6 years of age showed a profoundly altered gene expression pattern with enrichment of genes encoding fibrillary collagens, modulation of proteoglycans, switch in thrombospondin isoforms, and signatures of fibroblast activation. In addition, a population of cardiomyocytes with a high proregenerative profile was identified in infant patients with DCM but was absent in children >6 years of age. This cluster showed high expression of cell cycle activators such as cyclin D family members, increased glycolytic metabolism and antioxidative genes, and alterations in ß-adrenergic signaling genes. CONCLUSIONS: Novel insights into the cellular transcriptomes of hearts from pediatric patients with DCM provide remarkable age-dependent changes in the expression patterns of fibroblast and cardiomyocyte genes with less fibrotic but enriched proregenerative signatures in infants.


Assuntos
Cardiomiopatia Dilatada/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de RNA/métodos , Cardiomiopatia Dilatada/patologia , Proliferação de Células , Criança , Pré-Escolar , Feminino , Humanos , Masculino
8.
Anesth Analg ; 130(1): e1-e4, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30198930

RESUMO

The understanding of anesthetic side effects on the heart has been hindered by the lack of sophisticated clinical models. Using micropatterned human-induced pluripotent stem cell-derived cardiomyocytes, we obtained cardiac muscle depressant profiles for propofol, etomidate, and our newly identified anesthetic compound KSEB01-S2. Propofol was the strongest depressant among the 3 compounds tested, exhibiting the largest decrease in contraction velocity, depression rate, and beating frequency. Interestingly, KSEB01-S2 behaved similarly to etomidate, suggesting a better cardiac safety profile. Our results provide a proof-of-concept for using human-induced pluripotent stem cell-derived cardiomyocytes as an in vitro platform for future drug design.


Assuntos
Anestésicos Intravenosos/toxicidade , Etomidato/toxicidade , Cardiopatias/induzido quimicamente , Frequência Cardíaca/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Propofol/toxicidade , Adulto , Cardiotoxicidade , Linhagem Celular , Feminino , Cardiopatias/patologia , Cardiopatias/fisiopatologia , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/patologia , Estudo de Prova de Conceito , Medição de Risco , Fatores de Tempo , Adulto Jovem
9.
J Mol Cell Cardiol ; 138: 269-282, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31866374

RESUMO

Cellular specialization and interaction with other cell types in cardiac tissue is essential for the coordinated function of cell populations in the heart. The complex interplay between cardiomyocytes, endothelial cells and fibroblasts is necessary for adaptation but can also lead to pathophysiological remodeling. To understand this complex interplay, we developed 3D vascularized cardiac tissue mimetics (CTM) to study heterocellular cross-talk in hypertrophic, hypoxic and fibrogenic environments. This 3D platform responds to physiologic and pathologic stressors and mimics the microenvironment of diseased tissue. In combination with endothelial cell fluorescence reporters, these cardiac tissue mimetics can be used to precisely visualize and quantify cellular and functional responses upon stress stimulation. Utilizing this platform, we demonstrate that stimulation of α/ß-adrenergic receptors with phenylephrine (PE) promotes cardiomyocyte hypertrophy, metabolic maturation and vascularization of CTMs. Increased vascularization was promoted by conditioned medium of PE-stimulated cardiomyocytes and blocked by inhibiting VEGF or upon ß-adrenergic receptor antagonist treatment, demonstrating cardiomyocyte-endothelial cross-talk. Pathophysiological stressors such as severe hypoxia reduced angiogenic sprouting and increased cell death, while TGF ß2 stimulation increased collagen deposition concomitant to endothelial-to-mesenchymal transition. In sum, we have developed a cardiac 3D culture system that reflects native cardiac tissue function, metabolism and morphology - and for the first time enables the tracking and analysis of cardiac vascularization dynamics in physiology and pathology.


Assuntos
Biomimética , Neovascularização Fisiológica , Engenharia Tecidual , Animais , Células Cultivadas , Feminino , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Fenilefrina/farmacologia , Ratos Sprague-Dawley , Estresse Fisiológico/efeitos dos fármacos
10.
PLoS One ; 13(2): e0192171, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29420582

RESUMO

BACKGROUND: The treatment of patients with multiple trauma including blunt chest/thoracic trauma (TxT) and hemorrhagic shock (H) is still challenging. Numerous studies show detrimental consequences of TxT and HS resulting in strong inflammatory changes, organ injury and mortality. Additionally, the reperfusion (R) phase plays a key role in triggering inflammation and worsening outcome. Ethyl pyruvate (EP), a stable lipophilic ester, has anti-inflammatory properties. Here, the influence of EP on the inflammatory reaction and liver injury in a double hit model of TxT and H/R in rats was explored. METHODS: Female Lewis rats were subjected to TxT followed by hemorrhage/H (60 min, 35±3 mm Hg) and resuscitation/R (TxT+H/R). Reperfusion was performed by either Ringer`s lactated solution (RL) alone or RL supplemented with EP (50 mg/kg). Sham animals underwent all surgical procedures without TxT+H/R. After 2h, blood and liver tissue were collected for analyses, and survival was assessed after 24h. RESULTS: Resuscitation with EP significantly improved haemoglobin levels and base excess recovery compared with controls after TxT+H/R, respectively (p<0.05). TxT+H/R-induced significant increase in alanine aminotransferase levels and liver injury were attenuated by EP compared with controls (p<0.05). Local inflammation as shown by increased gene expression of IL-6 and ICAM-1, enhanced ICAM-1 and HMGB1 protein expression and infiltration of the liver with neutrophils were also significantly attenuated by EP compared with controls after TxT+H/R (p<0.05). EP significantly reduced TxT+H/R-induced p65 activation in liver tissue. Survival rates improved by EP from 50% to 70% after TxT+H/R. CONCLUSIONS: These data support the concept that the pronounced local pro-inflammatory response in the liver after blunt chest trauma and hemorrhagic shock is associated with NF-κB. In particular, the beneficial anti-inflammatory effects of ethyl pyruvate seem to be regulated by the HMGB1/NF-κB axis in the liver, thereby, restraining inflammatory responses and liver injury after double hit trauma in the rat.


Assuntos
Proteína HMGB1/metabolismo , Inflamação/prevenção & controle , Fígado/efeitos dos fármacos , NF-kappa B/metabolismo , Piruvatos/farmacologia , Choque Hemorrágico/complicações , Traumatismos Torácicos/complicações , Ferimentos não Penetrantes/complicações , Animais , Feminino , Fígado/lesões , Ratos , Ratos Endogâmicos Lew
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA