Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38746084

RESUMO

C. glabrata is an opportunistic pathogen that can resist common antifungals and rapidly acquire multidrug resistance. A large amount of genetic variation exists between isolates, which complicates generalizations. Portable Tn-seq methods can efficiently provide genome-wide information on strain differences and genetic mechanisms. Using the Hermes transposon, the CBS138 reference strain and a commonly studied derivative termed 2001 were subjected to Tn-seq in control conditions and after exposure to varying doses of the clinical antifungal micafungin. The approach revealed large differences between these strains, including a 131 kb tandem duplication and a variety of fitness differences. Additionally, both strains exhibited up to 1000-fold increased transposon accessibility in subtelomeric regions relative to the BG2 strain, indicative of open subtelomeric chromatin in these isolates and large epigenetic variation within the species. Unexpectedly, the Pdr1 transcription factor conferred resistance to micafungin through targets other than CDR1 . Other micafungin resistance pathways were also revealed including mannosyltransferase activity and biosynthesis of the lipid precursor sphingosine, the drugging of which by SDZ 90-215 or myriocin enhanced the potency of micafungin in vitro . These findings provide insights into complexity of the C. glabrata species as well as strategies for improving antifungal efficacy. Summary: Candida glabrata is an emerging pathogen with large genetic diversity and genome plasticity. The type strain CBS138 and a laboratory derivative were mutagenized with the Hermes transposon and profiled using Tn-seq. Numerous genes that regulate innate and acquired resistance to an important clinical antifungal were uncovered, including a pleiotropic drug resistance gene (PDR1) and a duplication of part of one chromosome. Compounds that target PDR1 and other genes may augment the potency of existing antifungals.

2.
mSphere ; 9(1): e0055423, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38171022

RESUMO

The protein phosphatase calcineurin is vital for the virulence of the opportunistic fungal pathogen Candida glabrata. The host-induced stresses that activate calcineurin signaling are unknown, as are the targets of calcineurin relevant to virulence. To potentially shed light on these processes, millions of transposon insertion mutants throughout the genome of C. glabrata were profiled en masse for fitness defects in the presence of FK506, a specific inhibitor of calcineurin. Eighty-seven specific gene deficiencies depended on calcineurin signaling for full viability in vitro both in wild-type and pdr1∆ null strains lacking pleiotropic drug resistance. Three genes involved in cell wall biosynthesis (FKS1, DCW1, FLC1) possess co-essential paralogs whose expression depended on calcineurin and Crz1 in response to micafungin, a clinical antifungal that interferes with cell wall biogenesis. Interestingly, 80% of the FK506-sensitive mutants were deficient in different aspects of vesicular trafficking, such as endocytosis, exocytosis, sorting, and biogenesis of secretory proteins in the endoplasmic reticulum (ER). In response to the experimental antifungal manogepix that blocks GPI-anchor biosynthesis in the ER, calcineurin signaling increased and strongly prevented cell death independent of Crz1, one of its major targets. Comparisons between manogepix, micafungin, and the ER-stressing tunicamycin reveal a correlation between the degree of calcineurin signaling and the degree of cell survival. These findings suggest that calcineurin plays major roles in mitigating stresses of vesicular trafficking. Such stresses may arise during host infection and in response to antifungal therapies.IMPORTANCECalcineurin plays critical roles in the virulence of most pathogenic fungi. This study sheds light on those roles in the opportunistic pathogen Candida glabrata using a genome-wide analysis in vitro. The findings could lead to antifungal developments that also avoid immunosuppression.


Assuntos
Aminopiridinas , Antifúngicos , Candidíase , Isoxazóis , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida glabrata/fisiologia , Micafungina/uso terapêutico , Candidíase/microbiologia , Calcineurina/genética , Tacrolimo/farmacologia , Tacrolimo/uso terapêutico , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
3.
mSphere ; 8(4): e0025423, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37358297

RESUMO

Candida glabrata is a prominent opportunistic fungal pathogen of humans. The increasing incidence of C. glabrata infections is attributed to both innate and acquired resistance to antifungals. Previous studies suggest the transcription factor Pdr1 and several target genes encoding ABC transporters are critical elements of pleiotropic defense against azoles and other antifungals. This study utilizes Hermes transposon insertion profiling to investigate Pdr1-independent and Pdr1-dependent mechanisms that alter susceptibility to the frontline antifungal fluconazole. Several new genes were found to alter fluconazole susceptibility independent of Pdr1 (CYB5, SSK1, SSK2, HOG1, TRP1). A bZIP transcription repressor of mitochondrial function (CIN5) positively regulated Pdr1 while hundreds of genes encoding mitochondrial proteins were confirmed as negative regulators of Pdr1. The antibiotic oligomycin activated Pdr1 and antagonized fluconazole efficacy likely by interfering with mitochondrial processes in C. glabrata. Unexpectedly, disruption of many 60S ribosomal proteins also activated Pdr1, thus mimicking the effects of the mRNA translation inhibitors. Cycloheximide failed to fully activate Pdr1 in a cycloheximide-resistant Rpl28-Q38E mutant. Similarly, fluconazole failed to fully activate Pdr1 in a strain expressing a low-affinity variant of Erg11. Fluconazole activated Pdr1 with very slow kinetics that correlated with the delayed onset of cellular stress. These findings are inconsistent with the idea that Pdr1 directly senses xenobiotics and support an alternative hypothesis where Pdr1 senses cellular stresses that arise only after engagement of xenobiotics with their targets. IMPORTANCE Candida glabrata is an opportunistic pathogenic yeast that causes discomfort and death. Its incidence has been increasing because of natural defenses to our common antifungal medications. This study explores the entire genome for impacts on resistance to fluconazole. We find several new and unexpected genes can impact susceptibility to fluconazole. Several antibiotics can also alter the efficacy of fluconazole. Most importantly, we find that Pdr1-a key determinant of fluconazole resistance-is not regulated directly through binding of fluconazole and instead is regulated indirectly by sensing the cellular stresses caused by fluconazole blockage of sterol biosynthesis. This new understanding of drug resistance mechanisms could improve the outcomes of current antifungals and accelerate the development of novel therapeutics.


Assuntos
Antifúngicos , Fluconazol , Humanos , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Candida glabrata/genética , Cicloeximida/metabolismo , Cicloeximida/farmacologia , Farmacorresistência Fúngica/genética , Fluconazol/farmacologia , Proteínas Fúngicas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Xenobióticos/metabolismo , Xenobióticos/farmacologia
4.
bioRxiv ; 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37214952

RESUMO

Candida glabrata is a prominent opportunistic fungal pathogen of humans. The increasing incidence of C. glabrata infections is attributed to both innate and acquired resistance to antifungals. Previous studies suggest the transcription factor Pdr1 and several target genes encoding ABC transporters are critical elements of pleiotropic defense against azoles and other antifungals. This study utilizes Hermes transposon insertion profiling to investigate Pdr1-independent and Pdr1-dependent mechanisms that alter susceptibility to the frontline antifungal fluconazole. Several new genes were found to alter fluconazole susceptibility independent of Pdr1 ( CYB5 , SSK1 , SSK2 , HOG1 , TRP1 ). A bZIP transcription repressor of mitochondrial function ( CIN5 ) positively regulated Pdr1 while hundreds of genes encoding mitochondrial proteins were confirmed as negative regulators of Pdr1. The antibiotic oligomycin activated Pdr1 and antagonized fluconazole efficacy likely by interfering with mitochondrial processes in C. glabrata . Unexpectedly, disruption of many 60S ribosomal proteins also activated Pdr1, thus mimicking the effects of the mRNA translation inhibitors. Cycloheximide failed to fully activate Pdr1 in a cycloheximide-resistant Rpl28-Q38E mutant. Similarly, fluconazole failed to fully activate Pdr1 in a strain expressing a low-affinity variant of Erg11. Fluconazole activated Pdr1 with very slow kinetics that correlated with the delayed onset of cellular stress. These findings are inconsistent with the idea that Pdr1 directly senses xenobiotics and support an alternative hypothesis where Pdr1 senses cellular stresses that arise only after engagement of xenobiotics with their targets. Importance: Candida glabrata is an opportunistic pathogenic yeast that causes discomfort and death. Its incidence has been increasing because of natural defenses to our common antifungal medications. This study explores the entire genome for impacts on resistance to fluconazole. We find several new and unexpected genes can impact susceptibility to fluconazole. Several antibiotics can also alter the efficacy of fluconazole. Most importantly, we find that Pdr1 - a key determinant of fluconazole resistance - is not regulated directly through binding of fluconazole and instead is regulated indirectly by sensing the cellular stresses caused by fluconazole blockage of sterol biosynthesis. This new understanding of drug resistance mechanisms could improve the outcomes of current antifungals and accelerate the development of novel therapeutics.

5.
Elife ; 92020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-32338606

RESUMO

The H2A.Z histone variant, a genome-wide hallmark of permissive chromatin, is enriched near transcription start sites in all eukaryotes. H2A.Z is deposited by the SWR1 chromatin remodeler and evicted by unclear mechanisms. We tracked H2A.Z in living yeast at single-molecule resolution, and found that H2A.Z eviction is dependent on RNA Polymerase II (Pol II) and the Kin28/Cdk7 kinase, which phosphorylates Serine 5 of heptapeptide repeats on the carboxy-terminal domain of the largest Pol II subunit Rpb1. These findings link H2A.Z eviction to transcription initiation, promoter escape and early elongation activities of Pol II. Because passage of Pol II through +1 nucleosomes genome-wide would obligate H2A.Z turnover, we propose that global transcription at yeast promoters is responsible for eviction of H2A.Z. Such usage of yeast Pol II suggests a general mechanism coupling eukaryotic transcription to erasure of the H2A.Z epigenetic signal.


Assuntos
Histonas/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Transcrição Gênica , Montagem e Desmontagem da Cromatina , Histonas/genética , Regiões Promotoras Genéticas , RNA Polimerase II/genética , Proteínas de Saccharomyces cerevisiae/genética , Imagem Individual de Molécula , Sítio de Iniciação de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA