Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Mol Biol Rev ; 88(1): e0008122, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38436263

RESUMO

SUMMARYFarnesol was first identified as a quorum-sensing molecule, which blocked the yeast to hyphal transition in Candida albicans, 22 years ago. However, its interactions with Candida biology are surprisingly complex. Exogenous (secreted or supplied) farnesol can also act as a virulence factor during pathogenesis and as a fungicidal agent triggering apoptosis in other competing fungi. Farnesol synthesis is turned off both during anaerobic growth and in opaque cells. Distinctly different cellular responses are observed as exogenous farnesol levels are increased from 0.1 to 100 µM. Reported changes include altered morphology, stress response, pathogenicity, antibiotic sensitivity/resistance, and even cell lysis. Throughout, there has been a dearth of mechanisms associated with these observations, in part due to the absence of accurate measurement of intracellular farnesol levels (Fi). This obstacle has recently been overcome, and the above phenomena can now be viewed in terms of changing Fi levels and the percentage of farnesol secreted. Critically, two aspects of isoprenoid metabolism present in higher organisms are absent in C. albicans and likely in other yeasts. These are pathways for farnesol salvage (converting farnesol to farnesyl pyrophosphate) and farnesylcysteine cleavage, a necessary step in the turnover of farnesylated proteins. Together, these developments suggest a unifying model, whereby high, threshold levels of Fi regulate which target proteins are farnesylated or the extent to which they are farnesylated. Thus, we suggest that the diversity of cellular responses to farnesol reflects the diversity of the proteins that are or are not farnesylated.


Assuntos
Candida albicans , Farneseno Álcool , Farneseno Álcool/metabolismo , Percepção de Quorum , Proteínas Fúngicas/metabolismo , Fatores de Virulência/metabolismo
2.
Front Physiol ; 14: 1207567, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38054042

RESUMO

Aims: Farnesol was identified 20 years ago in a search for Candida albicans quorum sensing molecules (QSM), but there is still uncertainty regarding many aspects of its mode of action including whether it employs farnesol transport mechanisms other than diffusion. Based on the structural similarity between farnesol and the farnesylated portion of the MTL a pheromone, we explored the effects of ploidy and mating type locus (MTL) on the antifungal activity of exogenous farnesol. Methods and results: We approached this question by examining five MTL a and five MTLα haploid strains with regard to their farnesol sensitivity in comparison to six heterozygous MTL a/ α diploids. We examined the haploid and diploid strains for percent cell death after exposure of exponentially growing cells to 0-200 µM farnesol. The heterozygous (MTL a/α) diploids were tolerant of exogenous farnesol whereas the MTL a and MTLα haploids were on average 2- and 4-times more sensitive, respectively. In the critical range from 10-40 µM farnesol their cell death values were in the ratio of 1:2:4. Very similar results were obtained with two matched sets of MAT a, MATα, and MAT a/α Saccharomyces cerevisiae strains. Conclusion: We propose that the observed MTL dependence of farnesol is based on differentially regulated mechanisms of entry and efflux which determine the actual cellular concentration of farnesol. The mechanisms by which pathogens such as C. albicans tolerate the otherwise lethal effects of farnesol embrace a wide range of physiological functions, including MTL type, ubiquinone type (UQ6-UQ9), energy availability, and aerobic/anaerobic status.

3.
Infect Immun ; 91(12): e0038423, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37975682

RESUMO

Candida albicans is a lifelong member of the mycobiome causing mucosal candidiasis and life-threatening, systemic, and intra-abdominal disease in immunocompromised and transplant patients. Despite the clinical importance of intra-abdominal candidiasis with mortality rates between 40% and 70%, the contribution of fungal virulence factors and host immune responses to disease has not been extensively studied. Secretion of the quorum-sensing molecule, farnesol, acts as a virulence factor for C. albicans during systemic infection, while inducing local, protective innate immune responses in oral models of infection. Previously, we reported that farnesol recruits macrophages to the peritoneal cavity in mice, suggesting a role for farnesol in innate immune responses. Here, we expand on our initial findings, showing that farnesol profoundly alters the peritoneal cavity microenvironment promoting innate inflammation. Intra-peritoneal injection of farnesol stimulates rapid local death of resident peritoneal cells followed by recruitment of neutrophils and inflammatory macrophages into the peritoneal cavity and peritoneal mesothelium associated with an early increase in chemokines followed by proinflammatory cytokines. These rapid inflammatory responses to farnesol significantly increase morbidity and mortality of mice with intra-abdominal candidiasis associated with increased formation of peritoneal adhesions, despite similar rates of fungal clearance from the peritoneal cavity and retro-peritoneal organs. C. albicans ddp3Δ/ddp3Δ knockout and reconstituted strains recapitulate these findings. This indicates that farnesol may be detrimental to the host during intra-abdominal infections. Importantly, our results highlight a need to understand how C. albicans virulence factors modulate the host immune response within the peritoneum, an exceedingly common site of Candida infection.


Assuntos
Candidíase , Infecções Intra-Abdominais , Humanos , Animais , Camundongos , Candida albicans , Farneseno Álcool/farmacologia , Cavidade Peritoneal/patologia , Candidíase/microbiologia , Fatores de Virulência
4.
G3 (Bethesda) ; 13(10)2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37522561

RESUMO

Candida albicans is an efficient colonizer of human gastrointestinal tracts and skin and is an opportunistic pathogen. C. albicans exhibits morphological plasticity, and the ability to switch between yeast and filamentous morphologies is associated with virulence. One regulator of this switch is the quorum sensing molecule farnesol that is produced by C. albicans throughout growth. However, the synthesis, secretion, regulation, and turnover of farnesol are not fully understood. To address this, we used our improved farnesol assay to screen a transcription regulator knockout library for differences in farnesol accumulation in whole cultures, pellets, and supernatants. All screened mutants produced farnesol and they averaged 9.2× more farnesol in the pellet than the supernatant. Nineteen mutants had significant differences with ten mutants producing more farnesol than their SN152+ wild-type control strain while nine produced less. Seven mutants exhibited greater secretion of farnesol while two exhibited less. We examined the time course for farnesol accumulation in six mutants with the greatest accumulation differences and found that those differences persisted throughout growth and they were not time dependent. Significantly, two high-accumulating mutants did not exhibit the decay in farnesol levels during stationary phase characteristic of wild-type C. albicans, suggesting that a farnesol modification/degradation mechanism is absent in these mutants. Identifying these transcriptional regulators provides new insight into farnesol's physiological functions regarding cell cycle progression, white-opaque switching, yeast-mycelial dimorphism, and response to cellular stress.


Assuntos
Candida albicans , Farneseno Álcool , Humanos , Candida albicans/metabolismo , Farneseno Álcool/metabolismo , Percepção de Quorum/genética , Regulação Fúngica da Expressão Gênica
5.
Appl Microbiol Biotechnol ; 106(19-20): 6759-6773, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36107213

RESUMO

The dimorphic fungus Candida albicans is a commensal and opportunistic fungal pathogen of humans. It secretes at least four small lipophilic molecules, farnesol and three aromatic fusel alcohols. Farnesol has been identified as both a quorum sensing molecule (QSM) and a virulence factor. Our gas chromatography (GC)-based assay for these molecules exhibits high throughput, prevention of analyte loss by avoiding filtration and rotary evaporation, simultaneous cell lysis and analyte extraction by ethyl acetate, and the ability to compare whole cultures with their cell pellets and supernatants. Farnesol synthesis and secretion were separable phenomena and pellet:supernatant ratios for farnesol were high, up to 12:1. The assay was validated in terms of precision, specificity, ruggedness, accuracy, solution stability, detection limits (DL), quantitation limits (QL), and dynamic range. The DL for farnesol was 0.02 ng/µl (0.09 µM). Measurement quality was assessed by the relative error of the whole culture versus the sum of pellet and supernatant fractions (WPS). C. albicans strain SC5314 grown at 30 °C in complex and defined media (YPD and mRPMI) was assayed in biological triplicate 17 times over 3 days. Farnesol and the three aromatic fusel alcohols can be measured in the same assay. The levels of all four are greatly altered by the growth medium chosen. Significantly, the three fusel alcohols are synthesized during stationary phase, not during growth. They are secreted quickly without being retained in the cell pellet and may accumulate up to mM concentrations. KEY POINTS: • Quantitative analysis of both intra- and extracellular farnesol, and aromatic fusel oils. • High throughput, whole culture assay with simultaneous lysis and extraction. • Farnesol secretion and synthesis are distinct and separate events.


Assuntos
Candida albicans , Farneseno Álcool , Álcool Benzílico , Humanos , Óleos , Percepção de Quorum , Fatores de Virulência
6.
Microbiol Resour Announc ; 11(9): e0047822, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35920671

RESUMO

Phage SN1 infects Sphaerotilus natans and Pseudomonas aeruginosa strains. Its genome consists of 61,858 bp (64.3% GC) and 89 genes, including 32 with predicted functions. SN1 genome is very similar to Pseudomonas phage M6, which contains hypermodified thymidines. Genome analyses revealed similar base-modifying genes as those found in M6.

7.
J Phycol ; 57(4): 1199-1211, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33713347

RESUMO

Animals and fungi produce cholesterol and ergosterol, respectively, while plants produce the phytosterols stigmasterol, campesterol, and ß-sitosterol in various combinations. The recent sequencing of many algal genomes allows the detailed reconstruction of the sterol metabolic pathways. Here, we characterized sterol synthesis in two sequenced Chlorella spp., the free-living C. sorokiniana, and symbiotic C. variabilis NC64A. Chlamydomonas reinhardtii was included as an internal control and Coccomyxa subellipsoidea as a plant-like outlier. We found that ergosterol was the major sterol produced by Chlorella spp. and C. reinhardtii, while C. subellipsoidea produced the three phytosterols found in plants. In silico analysis of the C. variabilis NC64A, C. sorokiniana, and C. subellipsoidea genomes identified 22 homologs of sterol biosynthetic genes from Arabidopsis thaliana, Saccharomyces cerevisiae, and C. reinhardtii. The presence of CAS1, CPI1, and HYD1 in the four algal genomes suggests the higher plant cycloartenol branch for sterol biosynthesis, confirming that algae and fungi use different pathways for ergosterol synthesis. Phylogenetic analysis for 40 oxidosqualene cyclases (OSCs) showed that the nine algal OSCs clustered with the cycloartenol cyclases, rather than the lanosterol cyclases, with the OSC for C. subellipsoidea positioned in between the higher plants and the eight other algae. With regard to why C. subellipsoidea produced phytosterols instead of ergosterol, we identified 22 differentially conserved positions where C. subellipsoidea CAS and A. thaliana CAS1 have one amino acid while the three ergosterol producing algae have another. Together, these results emphasize the position of the unicellular algae as an evolutionary transition point for sterols.


Assuntos
Chlorella , Fitosteróis , Animais , Biologia Computacional , Ergosterol , Filogenia , Esteróis
8.
Microorganisms ; 8(11)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33114039

RESUMO

Ubiquinones (UQ) are intrinsic lipid components of many membranes. Besides their role in electron-transfer reactions there is evidence for them acting as free radical scavengers, yet their other roles in biological systems have received little study. The dimorphic fungal pathogen Candida albicans secretes farnesol as both a virulence factor and a quorum-sensing molecule. Thus, we were intrigued by the presence of UQ9 isoprenologue in farnesol-producing Candida species while other members of this genera harbor UQ7 as their major electron carrier. We examined the effect of UQ side chain length in Saccharomyces cerevisiae and C. albicans with a view towards identifying the mechanisms by which C. albicans protects itself from the high levels of farnesol it secretes, levels that are toxic to many other fungi including S. cerevisiae. In this study, we identify UQ9 as the major UQ isoprenoid in C. albicans, regardless of growth conditions or cell morphology. A S. cerevisiae model yeast engineered to make UQ9 instead of UQ6 was 4-5 times more resistant to exogenous farnesol than the parent yeast and this resistance was accompanied by greatly reduced reactive oxygen species (ROS) production. The resistance provided by UQ9 is specific for farnesol in that it does not increase resistance to high salt (1M NaCl) or other oxidants (5 mM H2O2 or 1 mM menadione). Additionally, the protection provided by UQ9 appears to be structural rather than transcriptional; UQ9 does not alter key transcriptional responses to farnesol stress. Here, we propose a model in which the longer UQ side chains are more firmly embedded in the mitochondrial membrane making them harder to pry out, so that in the presence of farnesol they remain functional without producing excess ROS. C. albicans and Candida dubliniensis evolved to use UQ9 rather than UQ7 as in other Candida species or UQ6 as in S. cerevisiae. This adaptive mechanism highlights the significance of UQ side chains in farnesol production and resistance quite apart from being an electron carrier in the respiratory chain.

9.
Microbiol Resour Announc ; 8(12)2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30938697

RESUMO

The Nebraska Sandhills region contains over 1,500 geochemically diverse interdunal lakes, some of which are potassium rich, alkaline, and hypersaline. Here, we report 16S rRNA amplicon pyrosequencing data on the water and sediment microbial communities of eight alkaline lakes in the Sandhills of western Nebraska.

10.
Phytother Res ; 33(2): 319-326, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30375074

RESUMO

Novel treatments are needed to prevent candidiasis/candidemia infection due to the emergence of Candida species resistant to current antifungals. Considering the yeast-to-hyphae switch is a critical factor to Candida albicans virulence, phenols common in plant sources have been reported to demonstrating their ability to prevent dimorphism. Therefore, phenols present in many agricultural waste stress (ferulic (FA) and gallic (GA) acid) were initially screened in isolation for their yeast-to-hyphae inhibitory properties at times 3, 6, and 24 hr. Both FA and GA inhibited 50% of hyphae formation inhibitory concentration (IC50 ) but at a concentration of 8.0 ± 0.09 and 90.6 ± 1.05 mM, respectively, at 24 hr. However, the inhibitory effect of FA increased by 1.9-2.6 fold when combined with different GA concentrations. GA and FA values decreased even lower when sinapic acid (SA) was added as a third component. As evidenced by concave isobolograms and combination indexes less than 1, both GA:F A and GA:FA:SA combinations acted synergistically to inhibit 50% hyphae formation at 24 hr. Lastly, acetylation of histone H3 lysine 56 acetylation (H3K56) was higher in response to the triple phenolic cocktail (using the IC50 24 hr inhibitory concentration level) comparable with the nontreated samples, indicating that the phenols inhibited hyphal growth in part by targeting H3K56 acetylation.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Hifas/efeitos dos fármacos , Acetilação/efeitos dos fármacos , Candida albicans/fisiologia , Candidíase/metabolismo , Candidíase/microbiologia , Ácidos Cumáricos/farmacologia , Sinergismo Farmacológico , Ácido Gálico/farmacologia , Hifas/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Regulação para Cima/efeitos dos fármacos , Virulência/efeitos dos fármacos
11.
PLoS One ; 13(12): e0205227, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30532131

RESUMO

Indole-3-acetic acid is a ubiquitous small molecule found in all domains of life. It is the predominant and most active auxin in seed plants, where it coordinates a variety of complex growth and development processes. The potential origin of auxin signaling in algae remains a matter of some controversy. In order to clarify the evolutionary context of algal auxin signaling, we undertook a genomic survey to assess whether auxin acts as a signaling molecule in the emerging model chlorophyte Chlorella sorokiniana UTEX 1230. C. sorokiniana produces the auxin indole-3-acetic acid (IAA), which was present in both the cell pellet and in the supernatant at a concentration of ~ 1 nM, and its genome encodes orthologs of genes related to auxin synthesis, transport, and signaling in higher plants. Candidate orthologs for the canonical AUX/IAA signaling pathway were not found; however, auxin-binding protein 1 (ABP1), an alternate auxin receptor, is present and highly conserved at essential auxin binding and zinc coordinating residues. Additionally, candidate orthologs for PIN proteins, responsible for intercellular, vectorial auxin transport in higher plants, were not found, but PILs (PIN-Like) proteins, a recently discovered family that mediates intracellular auxin transport, were identified. The distribution of auxin related gene in this unicellular chlorophyte demonstrates that a core suite of auxin signaling components was present early in the evolution of plants. Understanding the simplified auxin signaling pathways in chlorophytes will aid in understanding phytohormone signaling and crosstalk in seed plants, and in understanding the diversification and integration of developmental signals during the evolution of multicellular plants.


Assuntos
Chlorella/metabolismo , Evolução Molecular , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais/fisiologia , Transporte Biológico Ativo/fisiologia , Chlorella/genética , Proteínas de Plantas/genética , Receptores de Superfície Celular/genética
13.
Mol Microbiol ; 103(4): 567-575, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27987234

RESUMO

Candida albicans excretes E,E-farnesol as a virulence factor and quorum sensing molecule that prevents the yeast to hyphal conversion. Polke et al. (2016) identified eed1Δ/Δ as the first farnesol hypersensitive mutant of C. albicans. eed1Δ/Δ also excretes 10X more farnesol and while able to form hyphae, it cannot maintain hyphae. This mutant enables new research into unanswered questions, including the existence of potential farnesol receptors and transporters, regulation of farnesol synthesis, and relationships among farnesol, germ tube formation and hyphal maintenance. The eed1 farnesol hypersensitivity can be explained by higher internal concentrations of farnesol or lower thresholds for response. One possibility invokes misexpression of a transporter. Saccharomyces cerevisiae and C. albicans have transporters for farnesylated peptides, like the a-factor pheromone, which could potentially also transport farnesol for virulence and quorum sensing. Significantly, these transporters are repressed in MTLa/MTLα C. albicans. An evolutionary pressure for C. albicans to become diploid could derive from its use of farnesol. Alternatively, maintenance of hyphal growth may increase the farnesol response threshold. Finally, Dpp1p, Dpp2p and Dpp3p are non-specific pyrophosphatases responsible for farnesol synthesis. Changes in expression of these enzymes do not explain differences in farnesol levels implicating involvement of additional factors like a scaffolding molecule.


Assuntos
Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , Farneseno Álcool/metabolismo , Candida albicans/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Hifas/crescimento & desenvolvimento , Percepção de Quorum/fisiologia , Transdução de Sinais , Fatores de Virulência/metabolismo
14.
PLoS One ; 11(10): e0164449, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27727302

RESUMO

Formation of chlamydospores by Candida albicans was an established medical diagnostic test to confirm candidiasis before the molecular era. However, the functional role and pathological relevance of this in vitro morphological transition to pathogenesis in vivo remain unclear. We compared the physical properties of in vitro-induced chlamydospores with those of large C. albicans cells purified by density gradient centrifugation from Candida-infected mouse kidneys. The morphological and physical properties of these cells in kidneys of mice infected intravenously with wild type C. albicans confirmed that chlamydospores can form in infected kidneys. A previously reported chlamydospore-null Δisw2/Δisw2 mutant was used to investigate its role in virulence and chlamydospore induction. Virulence of the Δisw2/Δisw2 mutant strain was reduced 3.4-fold compared to wild type C. albicans or the ISW2 reconstituted strain. Altered host inflammatory reactions to the null mutant further indicate that ISW2 is a virulence factor in C. albicans. ISW2 deletion abolished chlamydospore formation within infected mouse kidneys, whereas the reconstituted strain restored chlamydospore formation in kidneys. Under chlamydospore inducing conditions in vitro, deletion of ISW2 significantly delayed chlamydospore formation, and those late induced chlamydospores lacked associated suspensor cells while attaching laterally to hyphae via novel spore-hypha septa. Our findings establish the induction of chlamydospores by C. albicans during mouse kidney colonization. Our results indicate that ISW2 is not strictly required for chlamydospores formation but is necessary for suspensor cell formation. The importance of ISW2 in chlamydospore morphogenesis and virulence may lead to additional insights into morphological differentiation and pathogenesis of C. albicans in the host microenvironment.


Assuntos
Adenosina Trifosfatases/genética , Candida albicans/patogenicidade , Candidíase/patologia , Proteínas Fúngicas/genética , Esporos Fúngicos/fisiologia , Fatores de Transcrição/genética , Adenosina Trifosfatases/deficiência , Adenosina Trifosfatases/metabolismo , Animais , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , Candidíase/microbiologia , Quimiocinas/sangue , Citocinas/sangue , Modelos Animais de Doenças , Feminino , Proteínas Fúngicas/metabolismo , Expressão Gênica , Genótipo , Rim/microbiologia , Rim/patologia , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Contraste de Fase , Esporos Fúngicos/genética , Fatores de Transcrição/deficiência , Fatores de Transcrição/metabolismo , Virulência
15.
Microorganisms ; 4(3)2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27681931

RESUMO

Due to the increased number of immunocompromised patients, infections with the pathogen Candida albicans have significantly increased in recent years. C. albicans transition from yeast to germ tubes is one of the essential factors for virulence. In this study we noted that Lee's medium, commonly used to induce filamentation, contained 500-fold more biotin than needed for growth and 40-fold more biotin than is typically added to growth media. Thus, we investigated the effects of excess biotin on growth rate and filamentation by C. albicans in different media. At 37 °C, excess biotin (4 µM) enhanced germ tube formation (GTF) ca. 10-fold in both Lee's medium and a defined glucose-proline medium, and ca. 4-fold in 1% serum. Two biotin precursors, desthiobiotin and 7-keto-8-aminopelargonic acid (KAPA), also stimulated GTF. During these studies we also noted an inverse correlation between the number of times the inoculum had been washed and the concentration of serum needed to stimulate GTF. C. albicans cells that had been washed eight times achieved 80% GTF with only 0.1% sheep serum. The mechanism by which 1-4 µM biotin enhances GTF is still unknown except to note that equivalent levels of biotin are needed to create an internal supply of stored biotin and biotinylated histones. Biotin did not restore filamentation for any of the four known filamentation defective mutants tested. C. albicans is auxotrophic for biotin and this biotin auxotrophy was fulfilled by biotin, desthiobiotin, or KAPA. However, biotin auxotrophy is not temperature dependent or influenced by the presence of 5% CO2. Biotin starvation upregulated the biotin biosynthetic genes BIO2, BIO3, and BIO4 by 11-, 1500-, and 150-fold, respectively, and BIO2p is predicted to be mitochondrion-localized. Based on our findings, we suggest that biotin has two roles in the physiology of C. albicans, one as an enzymatic cofactor and another as a morphological regulator. Finally, we found no evidence supporting prior claims that C. albicans only forms hyphae at very low biotin (0.1 nM) growth conditions.

16.
Int J Food Microbiol ; 222: 23-9, 2016 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-26828815

RESUMO

Candida yeasts are the dominant fungi in the healthy human microbiome, but are well-known for causing disease following a variety of perturbations. Evaluation of fungal populations from the healthy human gut revealed a significant negative correlation between the foodborne yeast, Debaryomyces hansenii, and Candida species. D. hansenii is reported to produce killer toxins (mycocins) effective against other yeast species. In order to better understand this phenomenon, a collection of 42 D. hansenii isolates was obtained from 22 cheeses and evaluated for killer activity against Candida albicans and Candida tropicalis over a range of temperatures and pH values. Twenty three strains demonstrated killer activity against both C. albicans and C. tropicalis, which was pH- and temperature-dependent, with no killer activity observed for any strain at pH6.5 or higher, or at ≥ 35 °C (physiological conditions in the human gastrointestinal tract). A cell-free mycocin preparation showed transient killer activity against C. albicans at 35 °C and a cheese sample containing a killer D. hansenii strain demonstrated sustained killer activity against both C. albicans and C. tropicalis. Together, these observations raise the possibility that D. hansenii could influence Candida populations in the gut.


Assuntos
Antibiose/fisiologia , Candida/efeitos dos fármacos , Microbiologia de Alimentos , Micotoxinas/farmacologia , Saccharomycetales/química , Queijo/microbiologia , Humanos , Concentração de Íons de Hidrogênio , Temperatura
17.
Infect Immun ; 83(10): 3857-64, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26195556

RESUMO

The polymorphic commensal fungus Candida albicans causes life-threatening disease via bloodstream and intra-abdominal infections in immunocompromised and transplant patients. Although host immune evasion is a common strategy used by successful human fungal pathogens, C. albicans provokes recognition by host immune cells less capable of destroying it. To accomplish this, C. albicans white cells secrete a low-molecular-weight chemoattractive stimulant(s) of macrophages, a phagocyte that they are able to survive within and eventually escape from. C. albicans opaque cells do not secrete this chemoattractive stimulant(s). We report here a physiological mechanism that contributes to the differences in the interaction of C. albicans white and opaque cells with macrophages. E,E-Farnesol, which is secreted by white cells only, is a potent stimulator of macrophage chemokinesis, whose activity is enhanced by yeast cell wall components and aromatic alcohols. E,E-farnesol results in up to an 8.5-fold increase in macrophage migration in vitro and promotes a 3-fold increase in the peritoneal infiltration of macrophages in vivo. Therefore, modulation of farnesol secretion to stimulate host immune recognition by macrophages may help explain why this commensal is such a successful pathogen.


Assuntos
Candida albicans/fisiologia , Candidíase/microbiologia , Farneseno Álcool/imunologia , Macrófagos/citologia , Percepção de Quorum , Animais , Candida albicans/genética , Candida albicans/imunologia , Candidíase/imunologia , Movimento Celular , Células Cultivadas , Fatores Quimiotáticos/imunologia , Feminino , Humanos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL
18.
Water Res ; 69: 110-119, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25463932

RESUMO

Despite the low nutrient level and constant presence of secondary disinfectants, bacterial re-growth still occurs in drinking water distribution systems. The molecular mechanisms that starved bacteria use to survive low-level chlorine-based disinfectants are not well understood. The objective of this study is to investigate these molecular mechanisms at the protein level that prepare starved cells for disinfection tolerance. Two commonly used secondary disinfectants chlorine and monochloramine, both at 1 mg/L, were used in this study. The proteomes of normal and starved Escherichia coli (K12 MG1655) cells were studied using quantitative proteomics. Over 60-min disinfection, starved cells showed significantly higher disinfection tolerance than normal cells based on the inactivation curves for both chlorine and monochloramine. Proteomic analyses suggest that starvation may prepare cells for the oxidative stress that chlorine-based disinfection will cause by affecting glutathione metabolism. In addition, proteins involved in stress regulation and stress responses were among the ones up-regulated under both starvation and chlorine/monochloramine disinfection. By comparing the fold changes under different conditions, it is suggested that starvation prepares E. coli for disinfection tolerance by increasing the expression of enzymes that can help cells survive chlorine/monochloramine disinfection. Protein co-expression analyses show that proteins in glycolysis and pentose phosphate pathway that were up-regulated under starvation are also involved in disinfection tolerance. Finally, the production and detoxification of methylglyoxal may be involved in the chlorine-based disinfection and cell defense mechanisms.


Assuntos
Adaptação Fisiológica , Desinfecção , Escherichia coli/fisiologia , Proteômica , Estresse Fisiológico , Adaptação Fisiológica/efeitos dos fármacos , Biocatálise/efeitos dos fármacos , Cloraminas/farmacologia , Cloro/farmacologia , Desinfetantes/farmacologia , Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/metabolismo , Ontologia Genética , Viabilidade Microbiana/efeitos dos fármacos , Anotação de Sequência Molecular , Estresse Oxidativo/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos
19.
Biotechnol Lett ; 36(7): 1503-13, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24737073

RESUMO

Quorum sensing (QS) activity in Ophiostoma fungi has not been described. We have examined the growth conditions on the control of dimorphism in Ophiostoma floccosum, an attractive biocontrol agent against blue-stain fungi, and its relationship with QS activity. In a defined culture medium with L-proline as the N source, a high inoculum size (10(7) c.f.u. ml(-1)) was the principal factor that promoted yeast-like growth. Inoculum size effect can be explained by the secretion of a QS molecule(s) (QSMs) responsible for inducing yeast morphology. QSM candidates were extracted from spent medium and their structure was determined by GC-MS. Three cyclic sesquiterpenes were found. The most abundant molecule, and therefore the principal candidate to be the QSM responsible for yeast growth of O. floccosum, was 1,1,4a-trimethyl-5,6-dimethylene-decalin (C15H24). Other two compounds were also detected.


Assuntos
Regulação Fúngica da Expressão Gênica , Substâncias de Crescimento/análise , Micélio/crescimento & desenvolvimento , Ophiostoma/citologia , Ophiostoma/fisiologia , Percepção de Quorum , Sesquiterpenos/análise , Meios de Cultura/química , Cromatografia Gasosa-Espectrometria de Massas , Ophiostoma/genética , Ophiostoma/crescimento & desenvolvimento
20.
J Biol Chem ; 289(3): 1662-74, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24302734

RESUMO

Methylglyoxal is a cytotoxic reactive carbonyl compound produced by central metabolism. Dedicated glyoxalases convert methylglyoxal to d-lactate using multiple catalytic strategies. In this study, the DJ-1 superfamily member ORF 19.251/GLX3 from Candida albicans is shown to possess glyoxalase activity, making this the first demonstrated glutathione-independent glyoxalase in fungi. The crystal structure of Glx3p indicates that the protein is a monomer containing the catalytic triad Cys(136)-His(137)-Glu(168). Purified Glx3p has an in vitro methylglyoxalase activity (Km = 5.5 mM and kcat = 7.8 s(-1)) that is significantly greater than that of more distantly related members of the DJ-1 superfamily. A close Glx3p homolog from Saccharomyces cerevisiae (YDR533C/Hsp31) also has glyoxalase activity, suggesting that fungal members of the Hsp31 clade of the DJ-1 superfamily are all probable glutathione-independent glyoxalases. A homozygous glx3 null mutant in C. albicans strain SC5314 displays greater sensitivity to millimolar levels of exogenous methylglyoxal, elevated levels of intracellular methylglyoxal, and carbon source-dependent growth defects, especially when grown on glycerol. These phenotypic defects are complemented by restoration of the wild-type GLX3 locus. The growth defect of Glx3-deficient cells in glycerol is also partially complemented by added inorganic phosphate, which is not observed for wild-type or glucose-grown cells. Therefore, C. albicans Glx3 and its fungal homologs are physiologically relevant glutathione-independent glyoxalases that are not redundant with the previously characterized glutathione-dependent GLO1/GLO2 system. In addition to its role in detoxifying glyoxals, Glx3 and its close homologs may have other important roles in stress response.


Assuntos
Aldeído Oxirredutases/metabolismo , Candida albicans/enzimologia , Aldeído Pirúvico/metabolismo , Estresse Fisiológico/fisiologia , Aldeído Oxirredutases/genética , Candida albicans/genética , Crioprotetores/farmacologia , Loci Gênicos/fisiologia , Glicerol/farmacocinética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Mutação , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Estresse Fisiológico/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA