Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
Clin Ter ; 174(3): 287-295, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37199366

RESUMO

Background: People with Severe Mental Illness (SMI) (schizophrenia, bipolar disorder, major depressive disorder, and personality disorders) experience a considerable risk of premature mortality because of cardiovascular disease, smoking, metabolic syndrome, etc. Recent research has demonstrated that this population spends almost 13 h per day being sedentary. Sedentary behavior (SB) is an independent risk factor for cardiovascular disease and mortality. Given the potential for physical activity (PA) to improve health and well-being in people with SMI, we developed a pilot randomized controlled trial (RCT) to evaluate a group intervention aimed at reducing SB and increasing PA of inpatients with SMI. Our primary aim is to assess the acceptability and feasibility of Men.Phys protocol, a new integrated treatment protocol for psychiatric inpatients. Secondary aims are to verify if the Men.Phys protocol decreased sedentary behavior and increased well-being, in terms of quality sleep, quality of life, and psychopathological symptoms and other measures. Methods: Will be enrolled people with SMI consecutively admitted to the emergency psychiatric ward in Colleferro, near Rome. Participant's physical activity, health, psychiatric and psychological status will be assessed at baseline. Randomised participants will receive treatment as usual (TAU) or the Men.Phys intervention. Men.Phys involves a group activity conducted by a mental health practitioner, during which patients repeat exercises that showed through a monitor. The protocol provides that, during hospitalization, the patient follow at least 3 sessions consecutively. Lazio 1 ethics Committee approved this research protocol. Results and Conclusions: To our knowledge, Men.Phys is the first RCT to investigate the impact of a group intervention targeting sedentary behavior in people with SMI during psychiatric hospitalization. If the intervention should be feasible and acceptable, further large-scale study can be developed and then implemented in routine care.


Assuntos
Doenças Cardiovasculares , Transtornos Mentais , Humanos , Masculino , Exercício Físico , Transtornos Mentais/complicações , Transtornos Mentais/terapia , Transtornos Mentais/diagnóstico , Saúde Mental , Ensaios Clínicos Controlados Aleatórios como Assunto , Comportamento Sedentário
2.
Int J Mol Sci ; 24(8)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37108054

RESUMO

This Special Issue is aimed to collect scientific papers that support holistic methodological approaches, both top-down and horizontal, for the correct application of various omics sciences because, when well-integrated, they can contribute to our understanding of the genotypic plasticity of plant species [...].


Assuntos
Plantas , Plantas/genética , Plantas/metabolismo
3.
New Phytol ; 238(5): 2047-2063, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36880371

RESUMO

The bioactive properties of olive (Olea europaea) fruits and olive oil are largely attributed to terpenoid compounds, including diverse triterpenoids such as oleanolic, maslinic and ursolic acids, erythrodiol, and uvaol. They have applications in the agri-food, cosmetics, and pharmaceutical industries. Some key steps involved in the biosynthesis of these compounds are still unknown. Genome mining, biochemical analysis, and trait association studies have been used to identify major gene candidates controlling triterpenoid content of olive fruits. Here, we identify and functionally characterize an oxidosqualene cyclase (OeBAS) required for the production of the major triterpene scaffold ß-amyrin, the precursor of erythrodiol, oleanolic and maslinic acids, and a cytochrome P450 (CYP716C67) that mediates 2α oxidation of the oleanane- and ursane-type triterpene scaffolds to produce maslinic and corosolic acids, respectively. To confirm the enzymatic functions of the entire pathway, we have reconstituted the olive biosynthetic pathway for oleanane- and ursane-type triterpenoids in the heterologous host, Nicotiana benthamiana. Finally, we have identified genetic markers associated with oleanolic and maslinic acid fruit content on the chromosomes carrying the OeBAS and CYP716C67 genes. Our results shed light on the biosynthesis of olive triterpenoids and provide new gene targets for germplasm screening and breeding for high triterpenoid content.


Assuntos
Olea , Triterpenos , Olea/genética , Frutas/metabolismo , Melhoramento Vegetal , Triterpenos/metabolismo
4.
Front Hum Neurosci ; 16: 806513, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35652005

RESUMO

Deep brain stimulation (DBS) of the subthalamic nucleus or the globus pallidus is an established treatment for Parkinson's disease (PD) that yields a marked and lasting improvement of motor symptoms. Yet, DBS benefit on gait disturbances in PD is still debated and can be a source of dissatisfaction and poor quality of life. Gait disturbances in PD encompass a variety of clinical manifestations and rely on different pathophysiological bases. While gait disturbances arising years after DBS surgery can be related to disease progression, early impairment of gait may be secondary to treatable causes and benefits from DBS reprogramming. In this review, we tackle the issue of gait disturbances in PD patients with DBS by discussing their neurophysiological basis, providing a detailed clinical characterization, and proposing a pragmatic programming approach to support their management.

5.
Handb Clin Neurol ; 184: 273-284, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35034741

RESUMO

A brain-machine interface represents a promising therapeutic avenue for the treatment of many neurologic conditions. Deep brain stimulation (DBS) is an invasive, neuro-modulatory tool that can improve different neurologic disorders by delivering electric stimulation to selected brain areas. DBS is particularly successful in advanced Parkinson's disease (PD), where it allows sustained improvement of motor symptoms. However, this approach is still poorly standardized, with variable clinical outcomes. To achieve an optimal therapeutic effect, novel adaptive DBS (aDBS) systems are being developed. These devices operate by adapting stimulation parameters in response to an input signal that can represent symptoms, motor activity, or other behavioral features. Emerging evidence suggests greater efficacy with fewer adverse effects during aDBS compared with conventional DBS. We address this topic by discussing the basics principles of aDBS, reviewing current evidence, and tackling the many challenges posed by aDBS for PD.


Assuntos
Interfaces Cérebro-Computador , Estimulação Encefálica Profunda , Doença de Parkinson , Humanos , Doença de Parkinson/terapia
6.
Foods ; 10(8)2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34441722

RESUMO

The extent and conditions of storage may affect the stability and quality of extra virgin olive oil (EVOO). This study aimed at evaluating the effects of different storage conditions (ambient, 4 °C and -18 °C temperatures, and argon headspace) on three EVOOs (low, medium, and high phenols) over 18 and 36 months, analyzing the main metabolites at six time points. The results showed that low temperatures are able to maintain all three EVOOs within the legal limits established by the current EU regulations for most compounds up to 36 months. Oleocanthal, squalene, and total phenols were affected by storage temperatures more than other compounds and degradation of squalene and α-tocopherol was inhibited only by low temperatures. The best temperature for 3-year conservation was 4 °C, but -18 °C represented the optimum temperature to preserve the organoleptic properties. The present study provided new insights that should guide EVOO manufacturers and traders to apply the most efficient storage methods to maintain the characteristics of the freshly extracted oils for a long conservation time.

7.
J Clin Med ; 10(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34441763

RESUMO

Deep brain stimulation (DBS) of the thalamic ventral intermediate nucleus is one of the main advanced neurosurgical treatments for drug-resistant tremor. However, not every patient may be eligible for this procedure. Nowadays, various other functional neurosurgical procedures are available. In particular cases, radiofrequency thalamotomy, focused ultrasound and radiosurgery are proven alternatives to DBS. Besides, other DBS targets, such as the posterior subthalamic area (PSA) or the dentato-rubro-thalamic tract (DRT), may be appraised as well. In this review, the clinical characteristics and pathophysiology of tremor syndromes, as well as long-term outcomes of DBS in different targets, will be summarized. The effectiveness and safety of lesioning procedures will be discussed, and an evidence-based clinical treatment approach for patients with drug-resistant tremor will be presented. Lastly, the future directions in the treatment of severe tremor syndromes will be elaborated.

8.
Ann Clin Transl Neurol ; 7(4): 579-583, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32162447

RESUMO

Pathophysiological understanding of gait and balance disorders in Parkinson's disease is insufficient and late recognition of fall risk limits efficacious follow-up to prevent or delay falls. We show a distinctive reduction of glucose metabolism in the left posterior parietal cortex, with increased metabolic activity in the cerebellum, in parkinsonian patients 6-8 months before their first fall episode. Falls in Parkinson's disease may arise from altered cortical processing of body spatial orientation, possibly predicted by abnormal cortical metabolism.


Assuntos
Acidentes por Quedas , Cerebelo/metabolismo , Glucose/metabolismo , Lobo Parietal/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia , Idoso , Cerebelo/diagnóstico por imagem , Feminino , Fluordesoxiglucose F18/farmacocinética , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Lobo Parietal/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/farmacocinética
9.
Artigo em Inglês | MEDLINE | ID: mdl-32211390

RESUMO

Postural instability, in particular at gait initiation (GI), and resulting falls are a major determinant of poor quality of life in subjects with Parkinson's disease (PD). Still, the contribution of the basal ganglia and dopamine on the feedforward postural control associated with this motor task is poorly known. In addition, the influence of anthropometric measures (AM) and initial stance condition on GI has never been consistently assessed. The biomechanical resultants of anticipatory postural adjustments contributing to GI [imbalance (IMB), unloading (UNL), and stepping phase) were studied in 26 unmedicated subjects with idiopathic PD and in 27 healthy subjects. A subset of 13 patients was analyzed under standardized medication conditions and the striatal dopaminergic innervation was studied in 22 patients using FP-CIT and SPECT. People with PD showed a significant reduction in center of pressure (CoP) displacement and velocity during the IMB phase, reduced first step length and velocity, and decreased velocity and acceleration of the center of mass (CoM) at toe off of the stance foot. All these measurements correlated with the dopaminergic innervation of the putamen and substantially improved with levodopa. These results were not influenced by anthropometric parameters or by the initial stance condition. In contrast, most of the measurements of the UNL phase were influenced by the foot placement and did not correlate with putaminal dopaminergic innervation. Our results suggest a significant role of dopamine and the putamen particularly in the elaboration of the IMB phase of anticipatory postural adjustments and in the execution of the first step. The basal ganglia circuitry may contribute to defining the optimal referent body configuration for a proper initiation of gait and possibly gait adaptation to the environment.

10.
Brain ; 142(7): 2037-2050, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31505548

RESUMO

Freezing of gait is a disabling symptom of Parkinson's disease that causes a paroxysmal inability to generate effective stepping. The underlying pathophysiology has recently migrated towards a dysfunctional supraspinal locomotor network, but the actual network derangements during ongoing gait freezing are unknown. We investigated the communication between the cortex and the subthalamic nucleus, two main nodes of the locomotor network, in seven freely-moving subjects with Parkinson's disease with a novel deep brain stimulation device, which allows on-demand recording of subthalamic neural activity from the chronically-implanted electrodes months after the surgical procedure. Multisite neurophysiological recordings during (effective) walking and ongoing gait freezing were combined with kinematic measurements and individual molecular brain imaging studies. Patients walked in a supervised environment closely resembling everyday life challenges. We found that during (effective) walking, the cortex and subthalamic nucleus were synchronized in a low frequency band (4-13 Hz). In contrast, gait freezing was characterized in every patient by low frequency cortical-subthalamic decoupling in the hemisphere with less striatal dopaminergic innervation. Of relevance, this decoupling was already evident at the transition from normal (effective) walking into gait freezing, was maintained during the freezing episode, and resolved with recovery of the effective walking pattern. This is the first evidence for a decoding of the networked processing of locomotion in Parkinson's disease and suggests that freezing of gait is a 'circuitopathy' related to a dysfunctional cortical-subcortical communication. A successful therapeutic approach for gait freezing in Parkinson's disease should aim at directly targeting derangements of neural network dynamics.


Assuntos
Córtex Cerebral/fisiopatologia , Transtornos Neurológicos da Marcha/fisiopatologia , Doença de Parkinson/fisiopatologia , Núcleo Subtalâmico/fisiopatologia , Eletrodos Implantados , Feminino , Transtornos Neurológicos da Marcha/complicações , Humanos , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiopatologia , Doença de Parkinson/complicações , Caminhada
11.
Brain ; 142(5): 1386-1398, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30851091

RESUMO

Deep brain stimulation of the internal globus pallidus is a highly effective and established therapy for primary generalized and cervical dystonia, but therapeutic success is compromised by a non-responder rate of up to 25%, even in carefully-selected groups. Variability in electrode placement and inappropriate stimulation settings may account for a large proportion of this outcome variability. Here, we present probabilistic mapping data on a large cohort of patients collected from several European centres to resolve the optimal stimulation volume within the pallidal region. A total of 105 dystonia patients with pallidal deep brain stimulation were enrolled and 87 datasets (43 with cervical dystonia and 44 with generalized dystonia) were included into the subsequent 'normative brain' analysis. The average improvement of dystonia motor score was 50.5 ± 30.9% in cervical and 58.2 ± 48.8% in generalized dystonia, while 19.5% of patients did not respond to treatment (<25% benefit). We defined probabilistic maps of anti-dystonic effects by aggregating individual electrode locations and volumes of tissue activated (VTA) in normative atlas space and ranking voxel-wise for outcome distribution. We found a significant relation between motor outcome and the stimulation volume, but not the electrode location per se. The highest probability of stimulation induced motor benefit was found in a small volume covering the ventroposterior globus pallidus internus and adjacent subpallidal white matter. We then used the aggregated VTA-based outcome maps to rate patient individual VTAs and trained a linear regression model to predict individual outcomes. The prediction model showed robustness between the predicted and observed clinical improvement, with an r2 of 0.294 (P < 0.0001). The predictions deviated on average by 16.9 ± 11.6 % from observed dystonia improvements. For example, if a patient improved by 65%, the model would predict an improvement between 49% and 81%. Results were validated in an independent cohort of 10 dystonia patients, where prediction and observed benefit had a correlation of r2 = 0.52 (P = 0.02) and a mean prediction error of 10.3% (±8.9). These results emphasize the potential of probabilistic outcome brain mapping in refining the optimal therapeutic volume for pallidal neurostimulation and advancing computer-assisted planning and programming of deep brain stimulation.


Assuntos
Mapeamento Encefálico/métodos , Estimulação Encefálica Profunda/métodos , Distonia/diagnóstico por imagem , Distonia/terapia , Globo Pálido/diagnóstico por imagem , Globo Pálido/fisiologia , Adulto , Idoso , Estimulação Encefálica Profunda/instrumentação , Distonia/fisiopatologia , Eletrodos Implantados , Feminino , Seguimentos , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Probabilidade , Estudos Retrospectivos , Resultado do Tratamento
13.
J Biomed Opt ; 24(2): 1-15, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30816029

RESUMO

Mapping flows in vivo is essential for the investigation of cardiovascular pathologies in animal models. The limitation of optical-based methods, such as space-time cross correlation, is the scattering of light by the connective and fat components and the direct wave front distortion by large inhomogeneities in the tissue. Nonlinear excitation of the sample fluorescence helps us by reducing light scattering in excitation. However, there is still a limitation on the signal-background due to the wave front distortion. We develop a diffractive optical microscope based on a single spatial light modulator (SLM) with no movable parts. We combine the correction of wave front distortions to the cross-correlation analysis of the flow dynamics. We use the SLM to shine arbitrary patterns of spots on the sample, to correct their optical aberrations, to shift the aberration corrected spot array on the sample for the collection of fluorescence images, and to measure flow velocities from the cross-correlation functions computed between couples of spots. The setup and the algorithms are tested on various microfluidic devices. By applying the adaptive optics correction algorithm, it is possible to increase up to 5 times the signal-to-background ratio and to reduce approximately of the same ratio the uncertainty of the flow speed measurement. By working on grids of spots, we can correct different aberrations in different portions of the field of view, a feature that allows for anisoplanatic aberrations correction. Finally, being more efficient in the excitation, we increase the accuracy of the speed measurement by employing a larger number of spots in the grid despite the fact that the two-photon excitation efficiency scales as the fourth power of this number: we achieve a twofold decrease of the uncertainty and a threefold increase of the accuracy in the evaluation of the flow speed.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Dispositivos Lab-On-A-Chip , Microfluídica , Microscopia/instrumentação , Microscopia/métodos , Óptica e Fotônica , Algoritmos , Animais , Calibragem , Doenças Cardiovasculares/diagnóstico por imagem , Coloides/química , Desenho de Equipamento , Lentes , Luz , Fótons , Ratos , Reprodutibilidade dos Testes , Espalhamento de Radiação , Software , Espectrofotometria
14.
Sci Rep ; 9(1): 1093, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30705308

RESUMO

Cultivated olive, a typical fruit crop species of the semi-arid regions, could successfully face the new scenarios driven by the climate change through the selection of tolerant varieties to salt and drought stresses. In the present work, multidisciplinary approaches, including physiological, epigenetic and genetic studies, have been applied to clarify the salt tolerance mechanisms in olive. Four varieties (Koroneiki, Royal de Cazorla, Arbequina and Picual) and a related form (O. europaea subsp. cuspidata) were grown in a hydroponic system under different salt concentrations from zero to 200 mM. In order to verify the plant response under salt stress, photosynthesis, gas exchange and relative water content were measured at different time points, whereas chlorophyll and leaf concentration of Na+, K+ and Ca2+ ions, were quantified at 43 and 60 days after treatment, when stress symptoms became prominent. Methylation sensitive amplification polymorphism (MSAP) technique was used to assess the effects of salt stress on plant DNA methylation. Several fragments resulted differentially methylated among genotypes, treatments and time points. Real time quantitative PCR (RT-qPCR) analysis revealed significant expression changes related to plant response to salinity. Four genes (OePIP1.1, OePetD, OePI4Kg4 and OeXyla) were identified, as well as multiple retrotransposon elements usually targeted by methylation under stress conditions.


Assuntos
Olea/genética , Olea/metabolismo , Folhas de Planta/metabolismo , Clorofila/metabolismo , Metilação de DNA/genética , Metilação de DNA/fisiologia , Regulação da Expressão Gênica de Plantas , Genótipo , Fotossíntese/genética , Fotossíntese/fisiologia , Folhas de Planta/genética
15.
Front Plant Sci ; 10: 1760, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32117338

RESUMO

The genetic control of self-incompatibility (SI) has been recently disclosed in olive. Inter-varietal crossing confirmed the presence of only two incompatibility groups (G1 and G2), suggesting a simple Mendelian inheritance of the trait. A double digest restriction associated DNA (ddRAD) sequencing of a biparental population segregating for incompatibility groups has been performed and high-density linkage maps were constructed in order to map the SI locus and identify gene candidates and linked markers. The progeny consisted of a full-sib family of 229 individuals derived from the cross 'Leccino' (G1) × 'Dolce Agogia' (G2) varieties, segregating 1:1 (G1:G2), in accordance with a diallelic self-incompatibility (DSI) model. A total of 16,743 single nucleotide polymorphisms was identified, 7,006 in the female parent 'Leccino' and 9,737 in the male parent 'Dolce Agogia.' Each parental map consisted of 23 linkage groups and showed an unusual large size (5,680 cM in 'Leccino' and 3,538 cM in 'Dolce Agogia'). Recombination was decreased across all linkage groups in pollen mother cells of 'Dolce Agogia,' the parent with higher heterozygosity, compared to megaspore mother cells of 'Leccino,' in a context of a species that showed exceptionally high recombination rates. A subset of 109 adult plants was assigned to either incompatibility group by a stigma test and the diallelic self-incompatibility (DSI) locus was mapped to an interval of 5.4 cM on linkage group 18. This region spanned a size of approximately 300 Kb in the olive genome assembly. We developed a sequence-tagged site marker in the DSI locus and identified five haplotypes in 57 cultivars with known incompatibility group assignment. A combination of two single-nucleotide polymorphisms (SNPs) was sufficient to predict G1 or G2 phenotypes in olive cultivars, enabling early marker-assisted selection of compatible genotypes and allowing for a rapid screening of inter-compatibility among cultivars in order to guarantee effective fertilization and increase olive production. The construction of high-density linkage maps has led to the development of the first functional marker in olive and provided positional candidate genes in the SI locus.

16.
Front Physiol ; 9: 1745, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30559682

RESUMO

Voluntary movements induce postural perturbations which are counteracted by anticipatory postural adjustments (APAs). These actions are known to build up long fixation chains toward available support points (inter-limb APAs), so as to grant whole body equilibrium. Moreover, recent studies highlighted that APAs also build-up short fixation chains, within the same limb where a distal segment is moved (intra-limb APAs), aimed at stabilizing the proximal segments. The neural structures generating intra-limb APAs still need investigations; the present study aims to compare focal movement kinematics and intra-limb APA latencies and pattern between healthy subjects and parkinsonian patients, assuming the latter as a model of basal ganglia dysfunction. Intra-limb APAs that stabilize the arm when the index-finger is briskly flexed were recorded in 13 parkinsonian patients and in 10 age-matched healthy subjects. Index-finger movement was smaller in parkinsonian patients vs. healthy subjects (p = 0.01) and more delayed with respect to the onset of the prime mover flexor digitorum superficialis (FDS, p < 0.0001). In agreement with the literature, in all healthy subjects the FDS activation was preceded by an inhibitory intra-limb APA in biceps brachii (BB) and anterior deltoid (AD), and almost simultaneous to an excitatory intra-limb APA in triceps brachii (TB). In parkinsonian patients, no significant differences were found for TB and AD intra-limb APA timings, however only four patients showed an inhibitory intra-limb APA in BB, while other four did not show any BB intra-limb APAs and five actually developed a BB excitation. The frequency of occurrence of normal sign, lacking, and inverted BB APAs was different in healthy vs. parkinsonian participants (p = 0.0016). The observed alterations in index-finger kinematics and intra-limb APA pattern in parkinsonian patients suggest that basal ganglia, in addition to shaping the focal movement, may also contribute to intra-limb APA control.

17.
Front Plant Sci ; 9: 1320, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30298075

RESUMO

Germplasm collections are basic tools for conservation, characterization, and efficient use of olive genetic resources. The identification of the olive cultivars maintained in the collections is an important ongoing task which has been performed by both, morphological and molecular markers. In the present study, based on the sequencing results of previous genomic projects, a new set of 1,043 EST-SNP markers has been identified. In order to evaluate its discrimination capacity and utility in diversity studies, this set of markers was used in a representative number of accessions from 20 different olive growing countries and maintained at the World Olive Germplasm Collection of IFAPA Centre 'Alameda del Obispo' (Córdoba, Spain), one of the world's largest olive germplasm bank. Thus, the cultivated material included: cultivars belonging to previously defined core collections by means of SSR markers and agronomical traits, well known homonymy cases, possible redundancies previously identified in the collection, and recently introduced accessions. Marker stability was tested in repeated analyses of a selected number of accessions, as well as in different trees and accessions belonging to the same cultivar. In addition, 15 genotypes from a cross 'Picual' × 'Arbequina' cultivars from the IFAPA olive breeding program and a set of 89 wild genotypes were also included in the study. Our results indicate that, despite their relatively wide variability, the new set of EST-SNPs displayed lower levels of genetic diversity than SSRs in the set of olive core collections tested. However, the EST-SNP markers displayed consistent and reliable results from different plant material sources and plant propagation events. The EST-SNPs revealed a clear cut off between inter- and intra-cultivar variation in olive. Besides, they were able to reliably discriminate among different accessions, to detect possible homonymy cases as well as efficiently ascertain the presence of redundant germplasm in the collection. Additionally, these markers were highly transferable to the wild genotypes. These results, together with the low genotyping error rates and the easy and fully automated procedure used to get the genotyping data, validate the new set of EST-SNPs as possible markers of choice for olive cultivar identification.

18.
Eur J Neurosci ; 48(6): 2362-2373, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30117212

RESUMO

Levodopa-induced dyskinesias are a common and disabling side effect of dopaminergic therapy in Parkinson's disease, but their neural mechanisms in vivo are still poorly understood. Besides striatal pathology, the importance of cortical dysfunction has been increasingly recognized. The supplementary motor area in particular, may have a relevant role in dyskinesias onset given its involvement in endogenously generated actions. The aim of the present study was to investigate the levodopa-related cortical excitability changes along with the emergence of levodopa-induced peak-of-dose dyskinesias in subjects with Parkinson's disease. Thirteen patients without dyskinesias and ten with dyskinesias received 200/50 mg fast-acting oral levodopa/benserazide following overnight withdrawal (12 hr) from their dopaminergic medication. We targeted transcranial magnetic stimulation to the supplementary motor area, ipsilateral to the most dopamine-depleted striatum defined with single-photon emission computed tomography with [123 I]N-ω-fluoropropyl-2ß-carbomethoxy-3ß-(4-iodophenyl)nortropane, and recorded transcranial magnetic stimulation-evoked potentials with high-density electroencephalography before and at 30, 60, and 180 min after levodopa/benserazide intake. Clinical improvement from levodopa/benserazide paralleled the increase in cortical excitability in both groups. Subjects with dyskinesias showed higher fluctuation of cortical excitability in comparison to non-dyskinetic patients, possibly reflecting dyskinetic movements. Together with endogenous brain oscillation, levodopa-related dynamics of brain state could influence the therapeutic response of neuromodulatory interventions.


Assuntos
Antiparkinsonianos/uso terapêutico , Benserazida/farmacologia , Levodopa/farmacologia , Doença de Parkinson/tratamento farmacológico , Idoso , Idoso de 80 Anos ou mais , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Combinação de Medicamentos , Discinesia Induzida por Medicamentos/tratamento farmacológico , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Córtex Motor/fisiopatologia , Doença de Parkinson/fisiopatologia , Estimulação Magnética Transcraniana/métodos
19.
Anal Chem ; 90(3): 2277-2284, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29266924

RESUMO

Microfluidic devices reproducing 3D networks are particularly valuable for nanomedicine applications such as tissue engineering and active cell sorting. There is however a gap in the possibility to measure how the flow evolves in such 3D structures. We show here that it is possible to map 3D flows in complex microchannel networks by combining wide field illumination to image correlation approaches. For this purpose, we have derived the spatiotemporal image correlation analysis of time stacks of single-plane illumination microscopy images. From the detailed analytical and numerical analysis of the resulting model, we developed a fitting method that allows us to measure, besides the in-plane velocity, the out-of-plane velocity component down to vz ≅ 65 µm/s. We have applied this method successfully to the 3D reconstruction of flows in microchannel networks with planar and 3D ramifications. These different network architectures have been realized by exploiting the great prototyping ability of a 3D printer, whose precision can reach few tens of micrometers, coupled to poly dimethyl-siloxane soft-printing lithography.

20.
Front Plant Sci ; 9: 1932, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30671076

RESUMO

Gene sequence variation in cultivated olive (Olea europaea L. subsp. europaea var. europaea), the most important oil tree crop of the Mediterranean basin, has been poorly evaluated up to now. A deep sequence analysis of fragments of four genes, OeACP1, OeACP2, OeLUS and OeSUT1, in 90 cultivars, revealed a wide range of polymorphisms along all recognized allele forms and unexpected allele frequencies and genotype combinations. High linkage values among most polymorphisms were recorded within each gene fragment. The great sequence variability corresponded to a low number of alleles and, surprisingly, to a small fraction of genotype combinations. The distribution, frequency, and combination of the different alleles at each locus is possibly due to natural and human pressures, such as selection, ancestrality, or fitness. Phylogenetic analyses of allele sequences showed distant and complex patterns of relationships among cultivated olives, intermixed with other related forms, highlighting an evolutionary connection between olive cultivars and the O. europaea subspecies cuspidata and cerasiformis. This study demonstrates how a detailed and complete sequence analysis of a few gene portions and a thorough genotyping on a representative set of cultivars can clarify important issues related to sequence polymorphisms, reconstructing the phylogeny of alleles, as well as the genotype combinations. The identification of regions representing blocks of recombination could reveal polymorphisms that represent putatively functional markers. Indeed, specific mutations found on the analyzed OeACP1 and OeACP2 fragments seem to be correlated to the fruit weight.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA