Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
New Phytol ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294895

RESUMO

Certain species in the Brassicaceae family exhibit high photosynthesis rates, potentially providing a valuable route toward improving agricultural productivity. However, factors contributing to their high photosynthesis rates are still unknown. We compared Hirschfeldia incana, Brassica nigra, Brassica rapa and Arabidopsis thaliana, grown under two contrasting light intensities. Hirschfeldia incana matched B. nigra and B. rapa in achieving very high photosynthesis rates under high growth-light condition, outperforming A. thaliana. Photosynthesis was relatively more limited by maximum photosynthesis capacity in H. incana and B. rapa and by mesophyll conductance in A. thaliana and B. nigra. Leaf traits such as greater exposed mesophyll specific surface enabled by thicker leaf or high-density small palisade cells contributed to the variation in mesophyll conductance among the species. The species exhibited contrasting leaf construction strategies and acclimation responses to low light intensity. High-light plants distributed Chl deeper in leaf tissue, ensuring even distribution of photosynthesis capacity, unlike low-light plants. Leaf anatomy of H. incana, B. nigra and B. rapa facilitated effective CO2 diffusion, efficient light use and provided ample volume for their high maximum photosynthetic capacity, indicating that a combination of adaptations is required to increase CO2-assimilation rates in plants.

2.
Crit Rev Food Sci Nutr ; : 1-25, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39081017

RESUMO

Fruit and vegetables (F&V) are vastly complicated products with highly diverse chemical and structural characteristics. Advanced imaging techniques either combine imaging with spectral information or can provide excellent tissue penetration, and enable the possibility to target, visualize and even qualify the chemical and physical (structural) heterogeneity within F&V. In this review, visible and/or near infrared hyperspectral imaging, Fourier transform infrared microspectroscopic imaging, Raman imaging, X-ray and magnetic resonance imaging to reveal chemical and structural information in a spatial context of F&V at the macro- (entire products), meso- (tissues), and micro- (individual cells) scales are comprehensively summarized. In addition, their basic concepts and operational procedures, particularly sample preparation and instrumental parameter adjustments, are addressed. Finally, future challenges and perspectives of these techniques are put forward. These imaging techniques are powerful tools to assess the biochemical and structural heterogeneity of F&V. Cost reduction, sensor fusion and data sharing platforms are future trends. More emphasis on aspects of knowledge and extension at the level of academia and research, especially on how to select techniques, choose operational parameters and prepare samples, are important to overcome barriers for the wider adoption of these techniques to improve the evaluation of F&V quality.


Hyperspectral imaging reveals chemical heterogeneity of fruit and vegetables.Imaging techniques provide spatial insights in fruit and vegetables at multiple scales.Future trends are cost reduction, sensor fusion and data sharing.Instrumental adjustment and sample preparation should receive more attention.

3.
Plant Physiol ; 195(3): 1893-1905, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546393

RESUMO

Respiration provides energy, substrates, and precursors to support physiological changes of the fruit during climacteric ripening. A key substrate of respiration is oxygen that needs to be supplied to the fruit in a passive way by gas transfer from the environment. Oxygen gradients may develop within the fruit due to its bulky size and the dense fruit tissues, potentially creating hypoxia that may have a role in the spatial development of ripening. This study presents a 3D reaction-diffusion model using tomato (Solanum lycopersicum) fruit as a test subject, combining the multiscale fruit geometry generated from magnetic resonance imaging and microcomputed tomography with varying respiration kinetics and contrasting boundary resistances obtained through independent experiments. The model predicted low oxygen levels in locular tissue under atmospheric conditions, and the oxygen level was markedly lower upon scar occlusion, aligning with microsensor profiling results. The locular region was in a hypoxic state, leading to its low aerobic respiration with high CO2 accumulation by fermentative respiration, while the rest of the tissues remained well oxygenated. The model further revealed that the hypoxia is caused by a combination of diffusion resistances and respiration rates of the tissue. Collectively, this study reveals the existence of the respiratory gas gradients and its biophysical causes during tomato fruit ripening, providing richer information for future studies on localized endogenous ethylene biosynthesis and fruit ripening.


Assuntos
Frutas , Oxigênio , Solanum lycopersicum , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/fisiologia , Solanum lycopersicum/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/fisiologia , Oxigênio/metabolismo , Difusão , Modelos Biológicos , Respiração Celular , Imageamento por Ressonância Magnética/métodos , Microtomografia por Raio-X
4.
Plant Methods ; 20(1): 12, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243306

RESUMO

BACKGROUND: High quality 3D information of the microscopic plant tissue morphology-the spatial organization of cells and intercellular spaces in tissues-helps in understanding physiological processes in a wide variety of plants and tissues. X-ray micro-CT is a valuable tool that is becoming increasingly available in plant research to obtain 3D microstructural information of the intercellular pore space and individual pore sizes and shapes of tissues. However, individual cell morphology is difficult to retrieve from micro-CT as cells cannot be segmented properly due to negligible density differences at cell-to-cell interfaces. To address this, deep learning-based models were trained and tested to segment individual cells using X-ray micro-CT images of parenchyma tissue samples from apple and pear fruit with different cell and porosity characteristics. RESULTS: The best segmentation model achieved an Aggregated Jaccard Index (AJI) of 0.86 and 0.73 for apple and pear tissue, respectively, which is an improvement over the current benchmark method that achieved AJIs of 0.73 and 0.67. Furthermore, the neural network was able to detect other plant tissue structures such as vascular bundles and stone cell clusters (brachysclereids), of which the latter were shown to strongly influence the spatial organization of pear cells. Based on the AJIs, apple tissue was found to be easier to segment, as the porosity and specific surface area of the pore space are higher and lower, respectively, compared to pear tissue. Moreover, samples with lower pore network connectivity, proved very difficult to segment. CONCLUSIONS: The proposed method can be used to automatically quantify 3D cell morphology of plant tissue from micro-CT instead of opting for laborious manual annotations or less accurate segmentation approaches. In case fruit tissue porosity or pore network connectivity is too low or the specific surface area of the pore space too high, native X-ray micro-CT is unable to provide proper marker points of cell outlines, and one should rely on more elaborate contrast-enhancing scan protocols.

5.
Int J Mol Sci ; 24(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37761982

RESUMO

DNA-based enzymes, or DNAzymes, are single-stranded DNA sequences with the ability to catalyze various chemical reactions, including the cleavage of the bond between two RNA nucleotides. Lately, an increasing interest has been observed in these RNA-cleaving DNAzymes in the biosensing and therapeutic fields for signal generation and the modulation of gene expression, respectively. Additionally, multiple efforts have been made to study the effects of the reaction environment and the sequence of the catalytic core on the conversion of the substrate into product. However, most of these studies have only reported alterations of the general reaction course, but only a few have focused on how each individual reaction step is affected. In this work, we present for the first time a mathematical model that describes and predicts the reaction of the 10-23 RNA-cleaving DNAzyme. Furthermore, the model has been employed to study the effect of temperature, magnesium cations and shorter substrate-binding arms of the DNAzyme on the different kinetic rate constants, broadening the range of conditions in which the model can be exploited. In conclusion, this work depicts the prospects of such mathematical models to study and anticipate the course of a reaction given a particular environment.


Assuntos
DNA Catalítico , Catálise , Domínio Catalítico , DNA de Cadeia Simples/genética , RNA/genética
6.
J Am Soc Mass Spectrom ; 34(10): 2407-2412, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37552044

RESUMO

Selected ion flow tube-mass spectrometry (SIFT-MS) is an analytical technique for volatile detection and quantification. SIFT-MS can be applied in a "white box" approach, measuring concentrations of target compounds, or as a "black box" fingerprinting technique, scanning all product ions during a full scan. Combining SIFT-MS full scan data acquired from multibatches or large-scale experiments remains problematic due to signal fluctuation over time. The standard approach of normalizing full scan data to the total signal intensity was insufficient. This study proposes a new approach to correct SIFT-MS fingerprinting data. In this concept, all of the product ions from a full scan are considered individual compounds for which notional concentrations can be calculated. Converting ion count rates into notional analyte concentrations accounts for any changes in the instrument parameters. The benefits of the proposed approach are demonstrated on three years of data from both multibatches and long-term experiments showing a significant reduction of system-induced fluctuations providing a better focus on the changes of interest.

7.
Front Plant Sci ; 14: 1195020, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457344

RESUMO

Growing tomato in hot weather conditions is challenging for fruit production and yield. Tomato cv. Savior is a heat-tolerant cultivar which can be grown during both the Vietnamese winter (mild condition) and summer (hot condition) season. Understanding the mechanisms of ethylene biosynthesis and signaling are important for agriculture, as manipulation of these pathways can lead to improvements in crop yield, stress tolerance, and fruit ripening. The objective of this study was to investigate an overview of ethylene biosynthesis and signaling from target genes to proteins and metabolites and the impact of growing season on a heat tolerant tomato cultivar throughout fruit ripening and postharvest storage. This work also showed the feasibility of absolute protein quantification of ethylene biosynthesis enzymes. Summer fruit showed the delayed peak of ethylene production until the red ripe stage. The difference in postharvest ethylene production between winter and summer fruit appears to be regulated by the difference in accumulation of 1-aminocyclopropane-1-carboxylic acid (ACC) which depends on the putative up-regulation of SAM levels. The lack of differences in protein concentrations between winter and summer fruit indicate that heat stress did not alter the ethylene biosynthesis-related protein abundance in heat tolerant cultivar. The analysis results of enzymatic activity and proteomics showed that in both winter and summer fruit, the majority of ACO activity could be mainly contributed to the abundance of ACO5 and ACO6 isoforms, rather than ACO1. Likewise, ethylene signal transduction was largely controlled by the abundance of ethylene receptors ETR1, ETR3, ETR6, and ETR7 together with the constitute triple response regulator CTR1 for both winter and summer grown tomatoes. Altogether our results indicate that in the heat tolerant tomato cv. Savior, growing season mainly affects the ethylene biosynthesis pathway and leaves the signaling pathway relatively unaffected.

8.
Int J Food Microbiol ; 402: 110313, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37421873

RESUMO

Botrytis cinerea is a devastating pathogen that can cause huge postharvest losses of strawberry. Although this fungus usually infects strawberries through their flowers, symptoms mainly appear when fruit are fully mature. A fast and sensitive method to detect and quantify the fungal infection, prior to symptom development, is, therefore, needed. In this study, we explore the possibility of using the strawberry volatilome to identify biomarkers for B. cinerea infection. Strawberry flowers were inoculated with B. cinerea to mimic the natural infection. First, quantitative polymerase chain reaction (qPCR) was used to quantify B. cinerea in the strawberry fruit. The detection limit of qPCR for B. cinerea DNA extracted from strawberries was 0.01 ng. Subsequently, changes in the fruit volatilome at different fruit developmental stages were characterized using gas chromatography - mass spectrometry (GC-MS) and selected ion flow tube mass spectrometry (SIFT-MS). Based on GC-MS data, 1-octen-3-ol produced by B. cinerea was confirmed as a potential biomarker of B. cinerea infection. Moreover, the product ion NO+ 127, obtained by SIFT-MS measurements, was proposed as a potential biomarker for B. cinerea infection by comparing its relative level with that of 1-octen-3-ol (obtained by GC-MS) and B. cinerea (obtained by qPCR). Separate PLS regressions were carried out for each developmental stages, and 11 product ions were significantly altered at all developmental stages. Finally, PLS regressions using these 11 ions as variables allowed the discrimination between samples containing different amount of B. cinerea. This work showed that profiling the fruit's volatilome using SIFT-MS can be used as a potential alternative to detect B. cinerea during the quiescent stage of B. cinerea infection prior to symptom development. Moreover, the corresponding compounds of potential biomarkers suggest that the volatile changes caused by B. cinerea infection may contribute to strawberry defense.


Assuntos
Fragaria , Fragaria/microbiologia , Frutas/microbiologia , Espectrometria de Massas , Botrytis , Doenças das Plantas/microbiologia
9.
J Exp Bot ; 74(20): 6321-6330, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37317945

RESUMO

Fruit quality traits are determined to a large extent by their metabolome. The metabolite content of climacteric fruit changes drastically during ripening and post-harvest storage, and has been investigated extensively. However, the spatial distribution of metabolites and how it changes in time has received much less attention as fruit are usually considered as homogenous plant organs. Yet, spatio-temporal changes of starch, which is hydrolyzed during ripening, has been used for a long time as a ripening index. As vascular transport of water, and hence convective transport of metabolites, slows down in mature fruit and even stalls after detachment, spatio-temporal changes in their concentration are probably affected by diffusive transport of gaseous molecules that act as substrate (O2), inhibitor (CO2), or regulator (ethylene and NO) of the metabolic pathways that are active during climacteric ripening. In this review, we discuss such spatio-temporal changes of the metabolome and how they are affected by transport of metabolic gases and gaseous hormones. As there are currently no techniques available to measure the metabolite distribution repeatedly by non-destructive means, we introduce reaction-diffusion models as an in silico tool to compute it. We show how the different components of such a model can be integrated and used to better understand the role of spatio-temporal changes of the metabolome in ripening and post-harvest storage of climacteric fruit that is detached from the plant, and discuss future research needs.


Assuntos
Climatério , Frutas , Frutas/metabolismo , Etilenos/metabolismo , Metaboloma , Gases/metabolismo
10.
J Exp Bot ; 74(14): 4125-4142, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37083863

RESUMO

Chloroplasts movement within mesophyll cells in C4 plants is hypothesized to enhance the CO2 concentrating mechanism, but this is difficult to verify experimentally. A three-dimensional (3D) leaf model can help analyse how chloroplast movement influences the operation of the CO2 concentrating mechanism. The first volumetric reaction-diffusion model of C4 photosynthesis that incorporates detailed 3D leaf anatomy, light propagation, ATP and NADPH production, and CO2, O2 and bicarbonate concentration driven by diffusional and assimilation/emission processes was developed. It was implemented for maize leaves to simulate various chloroplast movement scenarios within mesophyll cells: the movement of all mesophyll chloroplasts towards bundle sheath cells (aggregative movement) and movement of only those of interveinal mesophyll cells towards bundle sheath cells (avoidance movement). Light absorbed by bundle sheath chloroplasts relative to mesophyll chloroplasts increased in both cases. Avoidance movement decreased light absorption by mesophyll chloroplasts considerably. Consequently, total ATP and NADPH production and net photosynthetic rate increased for aggregative movement and decreased for avoidance movement compared with the default case of no chloroplast movement at high light intensities. Leakiness increased in both chloroplast movement scenarios due to the imbalance in energy production and demand in mesophyll and bundle sheath cells. These results suggest the need to design strategies for coordinated increases in electron transport and Rubisco activities for an efficient CO2 concentrating mechanism at very high light intensities.


Assuntos
Dióxido de Carbono , Zea mays , Dióxido de Carbono/metabolismo , NADP/metabolismo , Fotossíntese , Cloroplastos/metabolismo , Folhas de Planta , Células do Mesofilo , Trifosfato de Adenosina/metabolismo
11.
Micromachines (Basel) ; 14(3)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36985022

RESUMO

Microneedles are gaining a lot of attention in the context of sampling cutaneous biofluids such as capillary blood. Their minimal invasiveness and user-friendliness make them a prominent substitute for venous puncture or finger-pricking. Although the latter is suitable for self-sampling, the impracticality of manual handling and the difficulty of obtaining enough qualitative sample is driving the search for better solutions. In this context, hollow microneedle arrays (HMNAs) are particularly interesting for completely integrating sample-to-answer solutions as they create a duct between the skin and the sampling device. However, the fabrication of sharp-tipped HMNAs with a high aspect ratio (AR) is challenging, especially since a length of ≥1500 µm is desired to reach the blood capillaries. In this paper, we first described a novel two-step fabrication protocol for HMNAs in stainless steel by percussion laser drilling and subsequent micro-milling. The HMNAs were then integrated into a self-powered microfluidic sampling patch, containing a capillary pump which was optimized to generate negative pressure differences up to 40.9 ± 1.8 kPa. The sampling patch was validated in vitro, showing the feasibility of sampling 40 µL of liquid. It is anticipated that our proof-of-concept is a starting point for more sophisticated all-in-one biofluid sampling and point-of-care testing systems.

12.
Plant Physiol ; 192(2): 1268-1288, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36691698

RESUMO

Maize (Zea mays) kernels are the largest cereal grains, and their endosperm is severely oxygen deficient during grain fill. The causes, dynamics, and mechanisms of acclimation to hypoxia are minimally understood. Here, we demonstrate that hypoxia develops in the small, growing endosperm, but not the nucellus, and becomes the standard state, regardless of diverse structural and genetic perturbations in modern maize (B73, popcorn, sweet corn), mutants (sweet4c, glossy6, waxy), and non-domesticated wild relatives (teosintes and Tripsacum species). We also uncovered an interconnected void space at the chalazal pericarp, providing superior oxygen supply to the placental tissues and basal endosperm transfer layer. Modeling indicated a very high diffusion resistance inside the endosperm, which, together with internal oxygen consumption, could generate steep oxygen gradients at the endosperm surface. Manipulation of oxygen supply induced reciprocal shifts in gene expression implicated in controlling mitochondrial functions (23.6 kDa Heat-Shock Protein, Voltage-Dependent Anion Channel 2) and multiple signaling pathways (core hypoxia genes, cyclic nucleotide metabolism, ethylene synthesis). Metabolite profiling revealed oxygen-dependent shifts in mitochondrial pathways, ascorbate metabolism, starch synthesis, and auxin degradation. Long-term elevated oxygen supply enhanced the rate of kernel development. Altogether, evidence here supports a mechanistic framework for the establishment of and acclimation to hypoxia in the maize endosperm.


Assuntos
Amido , Zea mays , Gravidez , Feminino , Humanos , Zea mays/metabolismo , Amido/metabolismo , Placenta/metabolismo , Endosperma/metabolismo , Oxigênio/metabolismo , Hipóxia/metabolismo
13.
Crit Rev Food Sci Nutr ; 63(30): 10283-10302, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35647708

RESUMO

Mechanical damage of fresh fruit occurs throughout the postharvest supply chain leading to poor consumer acceptance and marketability. In this review, the mechanisms of damage development are discussed first. Mathematical modeling provides advanced ways to describe and predict the deformation of fruit with arbitrary geometry, which is important to understand their mechanical responses to external forces. Also, the effects of damage at the cellular and molecular levels are discussed as this provides insight into fruit physiological responses to damage. Next, direct measurement methods for damage including manual evaluation, optical detection, magnetic resonance imaging, and X-ray computed tomography are examined, as well as indirect methods based on physiochemical indexes. Also, methods to measure fruit susceptibility to mechanical damage based on the bruise threshold and the amount of damage per unit of impact energy are reviewed. Further, commonly used external and interior packaging and their applications in reducing damage are summarized, and a recent biomimetic approach for designing novel lightweight packaging inspired by the fruit pericarp. Finally, future research directions are provided.HIGHLIGHTSMathematical modeling has been increasingly used to calculate damage to fruit.Cell and molecular mechanisms response to fruit damage is an under-explored area.Susceptibility measurement of different mechanical forces has received attention.Customized design of reusable and biodegradable packaging is a hot topic of research.


Assuntos
Frutas , Fenômenos Mecânicos , Frutas/química
14.
Proc Natl Acad Sci U S A ; 119(34): e2200759119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969777

RESUMO

Adaptive plasticity requires an integrated suite of functional responses to environmental variation, which can include social communication across life stages. Desert locusts (Schistocerca gregaria) exhibit an extreme example of phenotypic plasticity called phase polyphenism, in which a suite of behavioral and morphological traits differ according to local population density. Male and female juveniles developing at low population densities exhibit green- or sand-colored background-matching camouflage, while at high densities they show contrasting yellow and black aposematic patterning that deters predators. The predominant background colors of these phenotypes (green/sand/yellow) all depend on expression of the carotenoid-binding "Yellow Protein" (YP). Gregarious (high-density) adults of both sexes are initially pinkish, before a YP-mediated yellowing reoccurs upon sexual maturation. Yellow color is especially prominent in gregarious males, but the reason for this difference has been unknown since phase polyphenism was first described in 1921. Here, we use RNA interference to show that gregarious male yellowing acts as an intrasexual warning signal, which forms a multimodal signal with the antiaphrodisiac pheromone phenylacetonitrile (PAN) to prevent mistaken sexual harassment from other males during scramble mating in a swarm. Socially mediated reexpression of YP thus adaptively repurposes a juvenile signal that deters predators into an adult signal that deters undesirable mates. These findings reveal a previously underappreciated sexual dimension to locust phase polyphenism, and promote locusts as a model for investigating the relative contributions of natural versus sexual selection in the evolution of phenotypic plasticity.


Assuntos
Mimetismo Biológico , Gafanhotos , Animais , Feminino , Gafanhotos/genética , Masculino , Feromônios/metabolismo , Pigmentação , Densidade Demográfica , Caracteres Sexuais
15.
Front Plant Sci ; 13: 912667, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874021

RESUMO

The necrotrophic fungus Botrytis cinerea is a major threat to strawberry cultivation worldwide. By screening different Fragaria vesca genotypes for susceptibility to B. cinerea, we identified two genotypes with different resistance levels, a susceptible genotype F. vesca ssp. vesca Tenno 3 (T3) and a moderately resistant genotype F. vesca ssp. vesca Kreuzkogel 1 (K1). These two genotypes were used to identify the molecular basis for the increased resistance of K1 compared to T3. Fungal DNA quantification and microscopic observation of fungal growth in woodland strawberry leaves confirmed that the growth of B. cinerea was restricted during early stages of infection in K1 compared to T3. Gene expression analysis in both genotypes upon B. cinerea inoculation suggested that the restricted growth of B. cinerea was rather due to the constitutive resistance mechanisms of K1 instead of the induction of defense responses. Furthermore, we observed that the amount of total phenolics, total flavonoids, glucose, galactose, citric acid and ascorbic acid correlated positively with higher resistance, while H2O2 and sucrose correlated negatively. Therefore, we propose that K1 leaves are more resistant against B. cinerea compared to T3 leaves, prior to B. cinerea inoculation, due to a lower amount of innate H2O2, which is attributed to a higher level of antioxidants and antioxidant enzymes in K1. To conclude, this study provides important insights into the resistance mechanisms against B. cinerea, which highly depend on the innate antioxidative profile and specialized metabolites of woodland strawberry leaves.

16.
Front Microbiol ; 13: 797234, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35633666

RESUMO

Apple is typically stored under low temperature and controlled atmospheric conditions to ensure a year round supply of high quality fruit for the consumer. During storage, losses in quality and quantity occur due to spoilage by postharvest pathogens. One important postharvest pathogen of apple is Botrytis cinerea. The fungus is a broad host necrotroph with a large arsenal of infection strategies able to infect over 1,400 different plant species. We studied the apple-B. cinerea interaction to get a better understanding of the defense response in apple. We conducted an RNAseq experiment in which the transcriptome of inoculated and non-inoculated (control and mock) apples was analyzed at 0, 1, 12, and 28 h post inoculation. Our results show extensive reprogramming of the apple's transcriptome with about 28.9% of expressed genes exhibiting significant differential regulation in the inoculated samples. We demonstrate the transcriptional activation of pathogen-triggered immunity and a reprogramming of the fruit's metabolism. We demonstrate a clear transcriptional activation of secondary metabolism and a correlation between the early transcriptional activation of the mevalonate pathway and reduced susceptibility, expressed as a reduction in resulting lesion diameters. This pathway produces the building blocks for terpenoids, a large class of compounds with diverging functions including defense. 1-MCP and hot water dip treatment are used to further evidence the key role of terpenoids in the defense and demonstrate that ethylene modulates this response.

17.
Front Plant Sci ; 13: 852817, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498690

RESUMO

With its increasing popularity, the need for optimal storage conditions of pointed cabbages becomes more important to meet the year-round demand. Storage of the pointed varieties, however, is more difficult compared to the traditional, round varieties and is limited to a few weeks in normal air. Pointed cabbages are more susceptible to quality loss (shriveling, yellowing of leaves, weight loss, fungal, and bacterial infections) and tend to spoil much faster. In order to provide a year-round availability of the fresh product, storage under controlled atmosphere (CA) could offer a solution. In this study, pointed, white cabbage heads (Brassica oleracea var. capitata for. alba L. subv. Conica cv. 'Caraflex') were stored at 1°C from November 2018 to May 2019 under four different CA conditions (1 kPa O2 + 1.5 kPa CO2, 1 kPa O2 + 5 kPa CO2, 3 kPa O2 + 1.5 kPa CO2, and 3 kPa O2 + 5 kPa CO2), and compared to storage under normal air. Results showed that CA storage resulted in a prolonged storage life with a good quality retention for both texture and aroma. CA-stored cabbages showed less weight loss, shriveling, and yellowing. Internal quality parameters [color, soluble solids content (SSC)] were stable over the whole storage period for all objects. The aroma profiles of both the storage atmosphere and cabbage samples were impacted by storage duration. The aroma of cabbage juice was also affected by the storage regime. A clear separation was found for cabbage stored under CA compared to the reference group. From the CA-treatments studied, a combination of low oxygen (1 kPa O2) and elevated carbon dioxide levels (5 kPa CO2) showed the best results maintaining quality. Storage under CA resulted in a better resemblance to the aroma of freshly, harvested produce compared to cabbages stored in normal air.

18.
PLoS Comput Biol ; 18(1): e1009610, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35020716

RESUMO

Dynamic models based on non-linear differential equations are increasingly being used in many biological applications. Highly informative dynamic experiments are valuable for the identification of these dynamic models. The storage of fresh fruit and vegetables is one such application where dynamic experimentation is gaining momentum. In this paper, we construct optimal O2 and CO2 gas input profiles to estimate the respiration and fermentation kinetics of pear fruit. The optimal input profiles, however, depend on the true values of the respiration and fermentation parameters. Locally optimal design of input profiles, which uses a single initial guess for the parameters, is the traditional method to deal with this issue. This method, however, is very sensitive to the initial values selected for the model parameters. Therefore, we present a robust experimental design approach that can handle uncertainty on the model parameters.


Assuntos
Respiração Celular/fisiologia , Fermentação/fisiologia , Frutas , Modelos Biológicos , Verduras , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Biologia Computacional , Frutas/química , Frutas/metabolismo , Frutas/fisiologia , Cinética , Oxigênio/análise , Oxigênio/metabolismo , Verduras/química , Verduras/metabolismo , Verduras/fisiologia
19.
Nat Food ; 3(11): 894-904, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-37118206

RESUMO

Computer-aided food engineering (CAFE) can reduce resource use in product, process and equipment development, improve time-to-market performance, and drive high-level innovation in food safety and quality. Yet, CAFE is challenged by the complexity and variability of food composition and structure, by the transformations food undergoes during processing and the limited availability of comprehensive mechanistic frameworks describing those transformations. Here we introduce frameworks to model food processes and predict physiochemical properties that will accelerate CAFE. We review how investments in open access, such as code sharing, and capacity-building through specialized courses could facilitate the use of CAFE in the transformation already underway in digital food systems.

20.
New Phytol ; 232(5): 2043-2056, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34480758

RESUMO

Climacteric ripening of tomato fruit is initiated by a characteristic surge of the production rate of ethylene, accompanied by an increase in respiration rate. As both activities consume O2 and produce CO2 , gas concentration gradients develop in the fruit that cause diffusive transport. This may, in turn, affect respiration and ethylene biosynthesis. Gas diffusion in fruit depends on the amount and connectivity of cells and intercellular spaces in 3D. We investigated micromorphological changes in different tomato tissues during development and ripening by visualizing cells and pores based on high-resolution micro-computed tomography, and computed effective O2 diffusivity coefficients based on microstructural features of the tissues. We demonstrated that mesocarp and septa tissues have larger cells but small and more disconnected pores than the placenta and columella, resulting in relatively lower effective O2 diffusivity coefficients. Cell disintegration occurred in the mesocarp and septa during ripening, indicating lysigenous air pore formation and resulting in a gradual increase of the effective O2 diffusivity. The results suggest that hypoxic conditions caused by the increasing size and, hence, diffusion resistance of the growing fruit may induce an increase of tissue porosity that results in a greatly enhanced O2 diffusivity and, thus, helps to alleviate them.


Assuntos
Solanum lycopersicum , Etilenos , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/metabolismo , Oxigênio/metabolismo , Proteínas de Plantas/metabolismo , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA